

V1.002

User manual

©opyright 2010 IRAI

Virtual Universe 3

Contents
Introduction .. 9

Necessary system ... 9

Organization .. 9

Installation .. 10

License... 10

Registering the license ... 10

Installation in a network ... 11

Environment ... 12

Browsing and interactions ... 15

The different types of objects ... 16

Universe ... 16

World .. 16

Camera .. 16

Light ... 16

3D Sprites .. 16

Behaviors ... 16

Basic concepts ... 17

3D rendering and sounds ... 17

Physics engine .. 18

Dialogue .. 19

Script ... 19

RUN/STOP mode ... 19

Media manager ... 20

Properties .. 20

Universe .. 20

Connection ... 20

Driver .. 20

Server name or IP address ... 20

Virtual Universe 4

Port ... 20

Driver M340 mode .. 20

Options ... 21

Automatic RUN ... 21

Variable and state display .. 21

Wireframe ... 21

Debug mode for the physics engine ... 21

World ... 21

Name .. 21

Display ... 21

Window size .. 21

Editable size ... 21

Background color .. 21

Environment light .. 22

Show the shading ... 22

Number of images displayed per second (read only)................... 22

Use the shader ... 22

Maximum number of images per second 22

Camera ... 22

Name .. 22

Position .. 22

Current position .. 22

Light .. 23

Name .. 23

Position .. 23

Color, type, etc. .. 23

3d Sprite .. 23

Name .. 23

Drawing .. 23

Position and size .. 23

Virtual Universe 5

Position and size (current values) ... 23

Material .. 23

Material (current values) .. 23

Browsing .. 24

Not selectable ... 24

Physics ... 24

Use the physics engine .. 24

Use gravity .. 24

The user can apply a force to the object 24

Type of body ... 24

Mass ... 26

Inertia force ... 26

Automatically adjust the center of mass 26

Coefficients… ... 26

Speed .. 26

Penetration.. 26

Physical joint with the parent ... 26

Joint .. 26

Pivot position .. 27

Action line ... 27

Limits... .. 27

Joint power.. 27

Joint strength .. 27

Joint breaking strength ... 27

Physical joint with another 3D Sprite ... 28

2D Sprite .. 28

Behaviors .. 29

Name .. 29

Type, etc. ... 29

Behavior type .. 29

Virtual Universe 6

Strength .. 32

Apply to brothers ... 33

Position / Rotation / Color ... 33

Links ... 33

Initial value .. 33

Current value, internal current value, conversion of data, write
mode ... 33

Names of other 3D Sprites ... 33

Use the value of this Behavior .. 33

External link .. 33

Sounds ... 34

Minimum distance ... 34

Script .. 34

Script ... 35

Write a script .. 36

Specific functions ... 37

3D Sprite name syntax ... 37

Access functions to values associated to a 3D Sprite 38

Behavior name syntax .. 39

Access functions to values associated to Behavior 39

Access functions to values associated to the Universe 40

Other functions ... 41

Object library .. 43

External links ... 43

Current value and internal current value .. 43

Reading a Virtual Universe value from the external software 44

Writing an external software value to Virtual Universe 45

Access to the external links of an object group 46

Examples ... 47

Conveyor ... 47

Virtual Universe 7

Operation ... 53

List of AUTOMGEN / AUTOSIM variable references 54

List of UNITY PRO variable references ... 55

Robot and bottles .. 56

Operation ... 60

List of AUTOMGEN / AUTOSIM variable references 60

NXT robot .. 61

Operation ... 66

The two wheels are controlled by motors whose power is controlled
by numeric variables. Two numeric values are used to control the
motor in each direction. ... 66

List of AUTOMGEN / AUTOSIM variable references 66

6 axis ABB Robot .. 67

Operation ... 71

List of AUTOMGEN / AUTOSIM variable references 72

Vacuum robot.. 73

Operation ... 75

List of AUTOMGEN / AUTOSIM variable references 75

Manipulator with cylinders and suction cup .. 76

Operation ... 81

List of AUTOMGEN / AUTOSIM variable references 81

Virtual Universe 9

Introduction

Virtual Universe is a 3D world simulator dedicated to automaton and
robotics. By integrating the latest technologies in 3D rendering, 3D
sound, physical simulation and script, Virtual Universe can be used to
create ultra realistic simulations. Virtual Universe can communicate with
automaton software workshops (AUTOMGEN, UNITY, etc.) so that the
virtual systems can be controlled like real systems.

Necessary system

Virtual Universe operates with the following operating systems: Windows
XP, Windows Vista and Windows 7.

Virtual Universe is compatible with AUTOMGEN 8.015 or later versions.

Organization

Virtual Universe 10

Installation

To install Virtual Universe, simply run the execution of the installation
package which has been delivered to you on a CD-ROM or by
downloading. Visit our website (www.irai.com) to download the latest
updates for Virtual Universe.

License

Registering the license
Virtual Universe operates as a demo version (for a 40 day trial) as long
as you haven’t registered the license.

To register the license, click on the “License” button in the Virtual
Universe configuration window.

Click on the “Enter a license” button.

Virtual Universe 11

Send the user code which is then generated by e-mail to the address
francoise.saut.irai@orange.fr

You will receive a validation code by e-mail which you then enter in the
“validation code” areas, then click on “Validate” to validate the license.
You have 20 days after the user code is generated to enter the validation
code.

Installation in a network

The Virtual Universe files can be installed on a file server. The licenses
can also be managed by a network license manager (see the specific
network license manager).

Virtual Universe 12

Environment
When Virtual Universe is started a 3D world rendering window appears:

The RUN/STOP button is used to run or stop the simulation.

The SETUP button opens or closes the configuration window:

Virtual Universe 13

The items of the
simulation: Camera,
Light, Objects, etc.

Properties of the
selected item

Open the media
manager for media
files used in the
project: 3D files,
bitmaps and
sounds.

Show or hide the
extended properties
of objects

Project files
management

RIN/STOP mode
selection

Select browsing
mode by objects list
or by properties list

Manage the license

Virtual Universe 14

The same window in “by properties” mode is used to obtain the list of
values of the same property for an object group. In this mode, the parent
of the objects needs to be selected on the upper left and the property on
the lower left.

Virtual Universe 15

Browsing and interactions

The following commands are used to browse and in 3D World or to
interact with these:

- Mouse wheel or keyboard Up and Down keys: Zoom

- Right mouse button pressed and movement of mouse: orbit around
the selected object.

- Movement of the mouse inside the rendering window: automatic
selection of the browsed object to orbit around.

- Left click of the mouse on an object in STOP mode: selection of the
object.

- Left mouse button pressed on an object and movement of mouse
in RUN mode: interaction with the selected object: push, pull,
move.

Virtual Universe 16

The different types of objects
The objects are organized hierarchically in child/parent.

Universe
This is the parent object of the entire Virtual Universe project, it contains
one or more Worlds, its properties set which automaton Virtual Universe
will dialogue with. The Universe object is always the parent of the
hierarchy.

World
This is a subset of the Universe. Its properties define the rendering
window aspect among other things. The World objects are always the
children of the Universe.

Camera
The Cameras represent a user’s viewpoint in a 3D world. The camera
objects are children of the World objects or 3d Sprites.

Light
The Lights are necessary, just like in the real World for being able to
observe the objects. The Light objects are children of the World objects
or 3d Sprites.

3D Sprites
These are the objects and their multiple physical and visual
characteristics. 3D Sprite objects are children of the World objects or 3D
Sprites.

Behaviors
Associated to a 3D Sprite or a Light, they will dynamically change their
properties: for example to change their positions or their colors or even
execute a script which can act on these objects. A Behavior can act as
an engine to transmit a force to a 3D Sprite. The Behavior objects are
children of the Light objects or 3D Sprites.

Virtual Universe 17

Basic concepts

3D rendering and sounds
The rendering engine used by Virtual Universe is Irrlicht which supports
via DIRECTX 8 or 9 or OPENGL (based on what is available on the PC).
The role of the 3D rendering engine is to display the 3D world objects lit
by the Lights based on the viewpoint set by a camera. The Cartesian
coordinates X/Y/Z govern the 3D world.

Virtual Universe 18

An axis identifier is displayed in the rendering window when the
configuration window is open.

The 3D sounds increase the realism of the simulations. The sounds are
emitted in the virtual world at the position of the objects and are thus
perceived based on the camera position.

Physics engine
Newton Physic Engine is the physics engine used by Virtual Universe for
physical object management: for example gravity, but also much more
than that.

To get the most out of the physics engine, it is important to be familiar
with the basic concepts of physics, such as forces, velocities, frictions,
mass, etc.

Virtual Universe 19

The physics engine parameters are associated to each 3d Sprite. A 3d
Sprite can be managed or not by the physics engine. For example, an
object only used visually may not be managed by the physics engine.

Dialogue
The dialogue with an external software is one of the essential elements
used to control the simulations. The external software type and the
connection parameter settings are found in the Universe properties. The
links are then set in Behaviors. The Behavior type will determine the
dialogue direction (reading from or writing to the external software).

Script
Scripts written in basic language can be associated to any object by a
Behavior.

RUN/STOP mode
Virtual Universe can be in STOP mode (simulation stopped and
initialized) or RUN (simulation in progress) mode. In RUN mode, the
physics engine and dialogue with the external software are enabled. The
Behaviors and scripts are enabled.

In RUN mode, rendering is performed as quickly as possible based on
the PC performance, the physics engine and the scripts are called every
10 ms.

Virtual Universe 20

The objects possess a double entry for certain parameters (for example
their positions). The first parameter set corresponds to their initial values,
the second set to their current values. In STOP mode, the initial values
are recopied in the current values.

Media manager
This is used to store the media files (3D files, bitmap files and sound
files) used in a project. The objects can use files found in the media
manager or outside it. The files located in the media manager will be
saved in the project file. This latter method is recommended if the project
needs to be shared or executed on another PC.

Properties

Universe

Connection

Driver
Determines the connection with an external software1

This is the case of connection with AUTOMGEN or AUTOSIM

Server name or IP address
Use “localhost” if the external software is run on the same PC. If the
software is run on another network PC, enter its IP address or its name
as seen on the network.

Port
Must be the same as the one selected in the AUTOMGEN / AUTOSIM
properties in the TCP/IP Connection Execution tab, server, port.

This is the case of connection to UNITY (simulator PLC or API M340)

Driver M340 mode
Local simulator: Simulator PLC run on the same PC, API connected by
USB: an API M340 connected to a USB port, API or simulator on IP : an

1 External software is the generic term used to define the software with which Virtual Universe
dialogues

Virtual Universe 21

API connected by Ethernet or a simulator run on another PC connected
to the network. In this case, document the IP address of the API or PC.

 Options

Automatic RUN
Causes it to go to RUN when the project is opened.

Variable and state display
Displays the variable names and the states for the Behaviors in the
rendering window referred to a variable of the external software.

Wireframe
The group of project 3D Sprites will be displayed in “wireframe” mode if
true.

Debug mode for the physics engine
If true, the volumes used by the physics engine are displayed in the
rendering window (yellow lines). This is very useful in the development
phase of a project using the physics engine to display the volumes
handled by the physics engine.

World

Name
Used to indicate a World by its name.

Display

Window size
Determines the rendering window size in pixels.

Editable size
If true, the window size can be edited by the user.

Background color
Determines the color displayed for the background on the rendering
window.

Virtual Universe 22

Environment light
Determines the color and intensity of the environment light (light lighting
the group of objects no matter what their positions and their orientations).

Show the shading
If true, this manages display of shading, it requires that the properties of
objects relative to shading also be positioned. The display of shading
may significantly slow down the rendering.

Number of images displayed per second (read only)
Indicates the number of images displayed in a second in the rendering
window.

Use the shader
Evolved 3D displaying technique reserved for specialists.

Maximum number of images per second
If different than 0, this limits the number of images displayed per second
to the indicated value. Used to preserve the processor time.

Camera

Name
Used to indicate a Camera by its name.

Position
Determines the initial position of the Camera by the target coordinates
(related to the Camera) as well as a rotation on the X and Y axes and a
zoom.

Current position
The same as above but for the current position.

The current position can be recopied in the initial position by clicking on
the down arrows appearing to the right of the initial position elements
and selecting “Copy from current values”.

Virtual Universe 23

Light

Name
Used to indicate a Light by its name.

Position
Used to define the coordinates and direction of the Light (direction is only
used for the Spot and Directional type lights).

Color, type, etc.
Determines the Light characteristics.

3d Sprite

Name
Used to indicate a 3d Sprite by its name

Drawing
Determines the 3D file used to set the 3D Sprite geometry and any
texture files.

Position and size
Sets the position, rotation (as well as the axis) and the initial scale of the
3D Sprite. Rotations are expressed in degrees (from – 180 to + 180
degrees).

Position and size (current values)
The same as above but for current values, with more: the translation and
relative rotation (based on the parent 3D Sprite), as well as the position
of the object center and the absolute rotation based on the World.

Material
These properties group the characteristics of the material used to display
the object. These characteristics are directly linked to the Irrlicht
rendering engine.

Material (current values)
The same as above for current values.

Virtual Universe 24

Browsing

Not selectable
If true, the 3D Sprite does not affect browsing when it is browsed by the
mouse cursor.

Physics
Groups the properties of an object concerning the physics engine.

Use the physics engine
If true the 3D Sprite will be handled by the physics engine, if not, the
object will be completely ignored by the physics engine, in other words,
the object will be only displayed in the 3D world, but it will have no
physical interaction with the other objects.

Use gravity
If true the 3D Sprite will be submitted to gravity. Its mass cannot be zero.

The user can apply a force to the object
If true, the user can, in RUN mode, act on the object by keeping the right
mouse button pressed when the cursor is on the 3D Sprite and by
moving the cursor.

Type of body
Determines the 3D Sprite geometry type for the physics engine

- Any: a convex shape obtained from the 3D Sprite geometry;

- Box: a rectangle parallelepiped;

- Sphere: a sphere;

- Capsule: a capsule.

Attention, the “Any” type if used with a complex 3D Sprite (possessing
very numerous faces), may use a lot of resources for the physical
simulation. So, if possible use one of the other types.

Virtual Universe 25

It is possible and often useful during the set up phases to display the
geometries handled by the physics engine by enabling the “Debug mode
for the physics engine” option in the Universe properties. Example:

The volumes handled by the physics engine appear in yellow.

Solution in the case of a complex 3D Sprite requiring an any shape:

- set a simplified 3D Sprite shape (with fewer facets), give it the
“invisible” and “managed by physics engine” attributes;

- preserve the complex 3D Sprite shape and add it as child with the
“visible” and “not managed by physics engine” attributes.

This solution is used in the “Conveyor” example.

Virtual Universe 26

Solution in the case of a 3D Sprite requiring a concave physical shape:

 set several convex shapes and link them by joints.

Mass
The mass of the object. A mass of 0 freezes the object.

Inertia force
Determines the amount of energy needed to turn the object on each of
the axes.

Automatically adjust the center of mass
If true, the object’s center of mass is automatically recalculated based on
the 3D Sprite geometry. If not, the center of mass is the point of the 3D
Sprite’s coordinates 0/0/0.

Coefficients…
Determine the friction, elasticity and suppleness of objects. A value of 0
uses the physics engine default parameters. The coefficient used by the
physics engine between an object A and an object B is the combination
(product) of the coefficients of object A and object B.

Speed
Used to access the total and local speed values of the object. These
values are only available for objects managed by the physics engine.

Penetration
If true, the collisions of the object are not managed. For objects linked by
joints (see below) the collisions are automatically deactivated between
two objects linked by a joint.

Physical joint with the parent
Determines the type of joint between a child 3D Sprite and its parent.
The two 3D Sprites must be managed by the physics engine. They can
be submitted to gravity or not.

Joint
Determines the joint type:

- Pivot;

- Sliding

Virtual Universe 27

- Fixed.

Pivot position
Determines the x/y/z position of the link with the parent object for pivot
links.

Action line
Determines the joint action line for Sliding (translation axis) and Pivot
(rotation axis) joints.

Limits...
Determines the joint minimum and maximum limits. If these two values
are equal, then the joint has no limits (rotation or translation without
limits).

Joint power
Determines the joint rigidity.

Joint strength
Gives the value of the strength supported by the joint.

Joint breaking strength
Strength beyond which the joint will be automatically destroyed. If 0, this
function is disabled. This is used to simulate the destruction of a link
between two objects (see the “NXT” example).

Virtual Universe 28

Physical joint with another 3D Sprite
Set of identical parameters but the link is created between the 3D Sprite
and another 3D Sprite rather than the parent 3D Sprite. The other 3D
Sprite is indicated by its name. This second joint is used to create
circular models (see the “ABB Robot” simulation):

2D Sprite
Used to display a 2D bitmap at the 3D Sprite position. See the dust
management in the vacuum robot example.

Virtual Universe 29

Behaviors
Behaviors are the elements which “give life” to the simulation. They also
define the links between the simulation and external software.

They are closely tied to the physics engine and will be able to
communicate strengths to the 3D Sprites and also manipulate the return
physical data (for example the speed of an object).

For a realistic simulation, actions by application of strengths should have
priority over actions directly changing the position or orientation of the 3D
Sprites.

A Behavior can also be used simply for storing a value during simulation.
The scripts will be able to access this value in read and write. Behaviors
can be considered like “global variables” for the application.

Name
Used to indicate the Behavior.

Type, etc.

Behavior type
One of the following types for Behaviors associated to a Light:

- None, the behavior does nothing;

- Writes the intensity of the Light;

o The Behavior value determines the light intensity of the
associated Light.

One of the following types for Behaviors associated to a 3D Sprite:

- None, the behavior does nothing;

- Applies a force or torque;

o All of these Behavior types are used to apply a strength or
torque to the object. The Strength parameters determines the
strength direction, the identification can be global or local
(based on type). The strength will applied based on the
current value of the Behavior. The strength applied will be the

Virtual Universe 30

parameterized strength multiplied by the current value of the
Behavior.

- Applies a local force to the 3D Sprites in contact;

o Applies a strength to all of the 3D Sprites in collision with the
associated 3D Sprite. The typical application is the simulation
of a conveyor belt. See the “ABB Robot” example for an
illustration. « Name/s of other 3D Sprites » is used to limit
the action of this Behavior to a group of 3D Sprites (see
below). Collision tests should only be used when strictly
necessary.

- Applies a braking force or braking torque;

o Identical but the applied strength will act like a brake.

- Defines the attraction force of the 3D Sprite;

o The 3D Sprite attracts other 3D Sprites. . “Name/s of other
3D Sprites” is used to limit the action of this Behavior to a
group of 3D Sprites (see below). “Attraction” is used to set
the attraction force, “Attraction distance” changes the action
area of this attraction (infinite if 0). The attraction strength is
also proportional to the square of the distance. This is
illustrated in the “Manipulator with cylinders and suctions”
example.

- Writes the 3D Sprite position and rotation;

o Modifies the position or orientation of a 3D Sprite. For
example, useful for taking an object to the initial position (see
the “Conveyor” example).

- Writes the 3D Sprite position and rotation in collision;

o Identical but writes the position and rotations of all the 3D
Sprites in collision with the parent 3D Sprite. The “Name/s of
other 3D Sprites” parameter is used to limit the action of this
Behavior to a group of 3D Sprites (see below). Collision tests
should only be used when strictly necessary. See the “ABB
Robot” example for an illustration of this Behavior.

Virtual Universe 31

- Write the 3D Sprite environment color;

o Changes the parent 3D Sprite environment color if the
current Behavior value is different from 0. The value to apply
is one of the Behavior parameters (see below). See the
“Conveyor” example for an illustration.

- Execute a script;

o Executes a script if the current Behavior value is different
from 0. Read the chapter on Scripts.

- Play a sound;

o Used to play a sound file in a loop or just once. The 3D
sound will be perceived as if coming from the parent 3D
Sprite. The sound is played if the current Behavior value is
different from 0. In addition, the current behavior value can
modulate the volume of speed of the played sound. The
examples illustrate this by modulating the played sound
speed to simulate the sound of engines based on the rotation
speed.

- Generic reading;

o The Behavior will only read an external software variable. For
example, this value can be used in a script.

- Reset;

o Reset the simulation to its initial state if the current Behavior
value is different from 0. The “Robot and bottles” example
illustrates this type of Behavior.

- Collision test with other 3D Sprites;

o Used to obtain the number of collisions between the parent
3D Sprite and the other Sprites of the current World. The
“Name/s of other 3D Sprites” parameter is used to limit the
action of this Behavior to a group of 3D Sprites (see below).
Collision tests should only be used when strictly necessary.

Virtual Universe 32

See the “Conveyor” example for an illustration of this
Behavior.

- Test if the joint is destroyed;

o Used to obtain the state of the joint between the 3D Sprite
associated to a Behavior and its parent.

- Obtain penetration with other 3D Sprites;

o Gives the penetration depth between the 3D Sprite
associated to the Behavior and the other 3D Sprites. This use
is typically the proximity sensor. The “Name/s of other 3D
Sprites” parameter is used to limit the action of this Behavior
to a group of 3D Sprites (see below). Penetration tests
should only be used when strictly necessary. See the “NXT”
example for an illustration of this Behavior.

- Obtain information on a 3D Sprite;

o Used to access the dynamic values of a 3D Sprite. The
“Select information to read” parameter determines the value.

- Joint position test;

o Used to test whether a joint value is between two limits. The
typical use is the simulation of a position sensor on an
actuator. “Min position” and “Max position” are the limits. This
is illustrated in the “Manipulator with cylinders and suctions”
example.

- Generic writing;

o The Behavior will only write an external software variable. For
example, this value can be calculated in a script.

Strength
Defines the strength value on each of the axes for the involved Behavior
types.

Virtual Universe 33

Apply to brothers
If true, the behavior is applied to the concerned 3D Sprite and all the
brothers. See the “Conveyor” example for an illustration of this
parameter.

Position / Rotation / Color
Values used for the Behaviors which need them.

Links
Based on the selected driver in the Universe properties, the definition of
an external variable name will appear specific to each external software.

Initial value
This will be recopied in the current value when going to simulation RUN
mode. It can be used to permanently enable a Behavior. For example, a
script can be unconditionally executed from simulation running by putting
this property to 1.

Current value, internal current value, conversion of data, write mode
The Behavior values and the conversion mode, see the “External links”
chapter for more information.

Names of other 3D Sprites
Certain Behaviors can use a group of 3D Sprites. By default, if this
parameter is blank, all of the current World 3D Sprites are concerned. By
documenting this parameter, the range of the Behavior is limited to the
3D Sprites whose name starts with the text contained in it. For example,
“DUST” will limit the Sprites to those whose name starts with “DUST”.
See the “Vacuum robot” example for an illustration of this.

Use the value of this Behavior
If not blank, this area gives the name to a Behavior whose value will be
read and recopied in the current internal value. See the “Script” chapter
for more information on the name conventions for Behaviors.

External link
If true, the Behavior will be listed in the list of external links (see the
“External links” chapter).

Virtual Universe 34

Sounds

Minimum distance
Used to edit the ratio between the volume sound and the distance of the
object generating the sound and the camera.

Script
See the following chapter

Virtual Universe 35

Script
The concept of Script is one of the most powerful tools of Virtual
Universe. It is used to integrate very sophisticated treatments to the
simulation. Scripts are activated by Behaviors. Each Behavior can
activate a script which will be a completely autonomous task. The Script
is executed when the current associated Behavior value is different from
0 and the script has not ended. The script ends if the last execution line
is reached or the END instruction is executed. Basic language is used.
Specific instructions can be used to access the values associated to
objects in read or write.

The script execution priorities can be edited in the properties of the
associated Behavior. The “Normal” priority corresponds to executing a
script element every 10 ms., the high priority corresponds to executing all
the scripts every 10 ms. Other lower priorities are also accessible. High
priority should not be used unless necessary (or a short script): it uses
up more processor time.

The Script is based on BeeBasic software.

For more information, see the help file basic_api.chm located in the
Virtual Universe installation directory, or click on the “Basic Help” button.

Virtual Universe 36

Write a script
Scripts are written in the Behaviors “Script” parameter. A script editing
window opens.

An editing area as well as a help button on the specific functions is
displayed. The “Script Error” Behavior element is used to obtain an error
possibly encountered in script analysis (the script in question is not
executed in this case but the simulation can still go to RUN mode). If an
error is detected, the line number is displayed so that the error can be
found in the editor (the line and column numbers are displayed at the
bottom of the editing area).

The “Script Output” Behavior element displays the outputs generated by
the PRINT basic function. These outputs are also displayed in the

Virtual Universe 37

rendering window at the location of the 3D Sprite associated to the
Behavior.

Specific functions
The specific functions are used to access the Virtual Universe values
associated to objects in read or write.

3D Sprite name syntax
The name for reference to 3D Sprites must comply with the following
syntax:

- a name without path: it will search for the first 3D Sprite whose
name starts with this text in all the current World 3D Sprites

- ..\<name> : a named 3D Sprite, brother of the parent 3D Sprite of
the Behavior;

- <name 1>**\<name2> : a 3D Sprite named name2, descendant of
a 3D Sprite named name1.

- <path\name> : a 3D Sprite corresponding to the path.

These names are not case sensitive.

Examples:

my sprite: indicates the first 3D Sprite whose name starts with the text
“my sprite”.

..\another sprite: indicates the 3D Sprite named “another sprite”, brother
of the parent 3D Sprite of the Behavior;

robot1**\level3 : indicates the 3D Sprite named “level3” descendant of
the robot 1 3D Sprite.

..\..\one more sprite: indicates the 3D Sprite named “one more sprite”, a
brother of the parent 3D Sprite parent of the Behavior;

Note: making reference to relative names (using relative paths) rather
than to absolute names makes it possible to have easy to duplicate
objects without having to change the links. The “ABB Robot” example
illustrated here.

Virtual Universe 38

Access functions to values associated to a 3D Sprite

GetValSprite3d(<parameter>) returns a value associated to a 3D Sprite

<parameter> indicates the parameter. It can indicate a 3D Sprite by its
name. If this is not the case, the parent 3D Sprite of the Behavior is
used.

The syntax is [<3D Sprite name>].<parameter name>

Examples:

POSX: position X of parent 3D Sprite

[BOX3].SPEEDZ speed on axis Z of the 3D Sprite named BOX3

List of possible parameters:

POSX, POXY, POSZ : absolute position in the 3D World.
ROTX, ROTY, ROTZ : absolute rotation in the 3D World.
RELPOSX, RELPOSY, RELPOSZ : relative position based on the parent
3D Sprite. Only valid if the object is managed by the physics engine and
is linked to a parent 3D Sprite by a joint.
RELROTX, RELROTY, RELROTZ : relative rotation based on the parent
3D Sprite. Only valid if the object is managed by the physics engine and
is linked to a parent 3D Sprite by a joint.

SCALEX,SCALEY, SCALEZ : scale.

FORCEX, FORCEY, FORCEZ : applied strength.

TORQUEX, TORQUEY, TORQUEZ : applied torque.

FORCEBRAKEX, FORCEBRAKEY, FORCEBRAKEZ : applied brake
strength.

TORQUEBRAKEX, TORQUEBRAKEY, TORQUEBRAKEZ : applied
brake torque.

SPEEDX, SPEEDY, SPEEDZ : Speed

ROTSPEEDX, ROTSPEEDY, ROTSPEEDZ : Angular speed

Virtual Universe 39

RELSPEEDX, RELSPEEDY, RELSPEEDZ : Relative speed

RELROTSPEEDX, RELROTSPEEDY, RELROTSPEEDZ : Relative
angular speed (at parent)

TRANSPARENCY : Transparency (from 0=opaque to 1=invisible)

SetValSprite3d(<parameter>,<value>) edits a value associated to a 3D Sprite

<parameter> is identical to GetValSprite3d with more:

JOINTMIN, JOINTMAX : minimum and maximum value of the joint with
the parent
JOINTMIN2, JOINTMAX2 : minimum and maximum value of the second
joint

Behavior name syntax
The name for reference to Behaviors must comply with the following
syntax:

- a name without path: it will search for the first Behavior whose
name starts with this text in all the current World 3D Behaviors

- ..\<name> : a named Behavior brother of the current behavior;

- <sprite name>\<Behavior name> : a named Behavior child of a 3D
Sprite. The 3D Sprite name must meet the criteria defined in the
“3D Sprite name syntax” chapter

Access functions to values associated to Behavior

GetBehavior(<parameter>) returns a value associated to a Behavior

<parameter> can be a Behavior name or a Behavior name and value
type.

The syntax is:

[<Behavior name>].<value type>

Virtual Universe 40

Or

[<Behavior name>]

If the value type is omitted, the current value is referenced.

The possible value type is “internalvalue” to access the current internal
value.

Examples:

[MY BEHAVIOR] : current value of the Behavior names “MY
BEHAVIOR”.

[MY DOG].internalvalue : current internal value of the Behavior named
“MY DOG”.

[robot1**\level2\position] : current value of the Behavior named
“position” child of the 3D Sprite named “level2” descendant of the 3D
Sprite named “robot1”.

[..\..\..\request].internalvalue : current internal value of the grandparent of
the parent of the Behavior.

SetBehavior(<parameter>,<value>) writes the value of a Behavior
<parameter > is identical to GetBehavior.

Access functions to values associated to the Universe

GetUniverse(<parameter>) returns a value associated to a Universe
<parameter> may be:

- RUNNINGDURING : returns the duration in ms since the last
switch to RUN of the simulation

- MOUSEBUTTONS : returns the state of the mouse buttons : bit 0
for the left button, bit 1 for the right button and bit 2 for the middle
button.

- MOUSEX, MOUSEY : returns the position of the mouse cursor
related to the upper left corner of the rendering window.

Virtual Universe 41

SetUniverse(<parameter>,<value>) writes a value associated to the

Universe
<parameter> may be

 PLEASEQUIT : forces termination of Virtual Universe

Other functions

GetFirstSprite3D(<name>) returns the first number of a 3D Sprite
The name must comply with the 3D Sprite name syntax. The numeric
value returned may be directly passed as a parameter to the access
functions to the values associated to 3D Sprites in the form of “#number”.
If the returned value is less than 0, no 3D Sprite was found. See the
“Vacuum Robot” example for an illustration.

GetNextSprite3D(<number>,<name>) returns the number of the next 3D Sprite.
<number> is the value returned by GetFirstSPrite3d.

If the returned value is less than 0, no 3D Sprite was found.

Rand() : returns a random value between 0 and 1
See the “Vacuum Robot” example.

ComputeIK(<ndof>,<x>,<y>,<z>,<a>,,<c>,<tx>,<ty>,<tz>,<b1>,<b2>,<b3
>,<b4>,<b5,<b6>) calculates the inverse kinematic resolution of a robot

The associated Behavior must be the child of 3D Sprite composing the
last element of the robot.

See the “ABB Robot” example.

<ndof> : number of degrees of freedom (must be 6) ;

<x,y,z> : position to reach ;

<a,b,c> : desired angle for the last element;

<tx,ty,tz> : tool movement ;

<b1> to <b6> : name of the 6 Behaviors which will receive the values for
each of the 6 axes.

The return value is:

Virtual Universe 42

 0 : no error, the values were calculated;

 -7 : the position cannot be reached;

 Another value < than 0 : error.

Virtual Universe 43

Object library

It is possible to import and export “complex” objects composed of 3D
Sprites, Lights and Behaviors.

Importing of complex objects is implemented by clicking on a World or on
a 3D Sprite with the right button of the mouse and selecting “Import”.
Examples of objects are located in the “library” sub-directory of the
Virtual Universe installation directory.

Exporting is implemented by clicking on a 3D Sprite with the right button
of the mouse and selecting “Export”. All of the “Children” elements are
exported.

External links

The external links are used to control simulations created in Virtual
Universe by an external software (for example AUTOMGEN).

The connection type is set in the Universe properties.

Exchanges are enabled when Virtual Universe is in RUN mode and the
external software is capable of performing these exchanges.

The connection state is displayed in the Universe properties.

A link is established between the external software and a Behavior.

Based on the selected external software, a specific variable name can be
documented in each Behavior.

Current value and internal current value
Each Behavior possesses two states : a current state and an internal
current state. These two states are used differently and inversely based
on the information direction: external software towards Virtual Universe
or Virtual Universe towards the external software.

Virtual Universe 44

Reading a Virtual Universe value from the external software
This action can be described as “reading an input” from the external
software viewpoint.

The data path is as follows:

The conversion type may be simple recopying of the value or an
inversion (for complemented Boolean variables).

In complement a “write mode to external software” can be specified.
Three modes are available:

- « Normal »: the value is written with each exchange;

- “Only when changed”: the value is only written to the external
software if it has changed (writing to certain external software may
use resources, the aim of this option is to mitigate the impact of
writing in terms of resources);

- « Safe »: the value is written with each change; Each writing is
checked (reading of the value after writing). This mode guarantees
that a fugitive state change (normally a true view sensor during a
very short duration – less than the data exchange time between the
Virtual Universe and external software – will be “seen” by the
external software. This is used in the “Conveyor” example.

Virtual Universe 45

Writing an external software value to Virtual Universe
This action can be described as “writing an output” from the external
software viewpoint.

The data path is as follows:

The conversion type may be simple recopying of the value or an
inversion (for complemented Boolean variables).

Virtual Universe 46

Access to the external links of an object group
It is possible to easily access all of the inputs and outputs associated to
an object group by clicking with the right button of the mouse on the
parent (click on the World to have all of the links of objects found in the
World) and selecting “External links”. Examples:

The typical application of this is to edit the attribution of inputs and
outputs of an object after importing or duplication. The variables
associated to inputs and outputs depend on the type of driver (type of
external software) selected in the Universe properties.

Virtual Universe 47

Examples

Conveyor
The conveyor project is located in the “samples\conveyor” sub-directory
of the Virtual Universe installation directory. It is accompanied by an
.AGN project for the AUTOMGEN or AUTOSIM software and an .XEF
project for the Unity Pro software.

This example illustrates the following functionalities in particular:

- Shadingmanagement : here “lightened” (with fewer faces) 3D
Sprites have been used to render the shading in order not to slow
down the rendering too much.

Virtual Universe 48

- Physical management : the same principle has been used for
“physical” management.

Virtual Universe 49

- Applications of a Behavior to an object group: the torque applied to
the rollers of each conveyor is generated by a sole Behavior with
the “apply to siblings” attribute.

- Forward run, backward run and brake simulation for the conveyors.

Virtual Universe 50

- Simulation of a light column.

- Management of the sensors has been implemented with “Collision
test” Behaviors. Management of the “stealth” of information from
the sensors has been treated with a “safe” write mode so that the
external software can “see” the information in a certain manner.

Virtual Universe 51

- Return of the boxes to the start position is managed by the pair of
Behaviors “Collision test” and “Writing of position”.

Virtual Universe 52

- The names and states of the variables are displayed in the
rendering window (choice of the user selected in the Universe
properties).

- Modulation of the sound speed based on the roller rotation speed.
Calculation implemented in a script.

Virtual Universe 53

Operation
The boxes are two different sizes, the aim is to empty them towards
two different destinations based on their size. Two sensors (a lower
sensor and an upper sensor) are used to identify the box size. Only
lower sensor = small box, lower and upper sensor = large box.

Virtual Universe 54

List of AUTOMGEN / AUTOSIM variable references
Symbol Variable Comments
before switch low sensor %i0 lower sensor before the switch

conveyor
before switch high sensor %i1 upper sensor before the switch

conveyor
departure sensor backward %i2 departure sensor behind

switch conveyor
departure sensor forward %i3 departure sensor before switch

conveyor
arrival sensor %i4 conveyor arrival sensor
middle conveyor forward %q0 middle conveyor motor forward
middle conveyor backward %q1 middle conveyor motor

backward
middle conveyor brake %q2 middle conveyor brake
middle conveyor red light %q3 middle conveyor light column

red light
middle conveyor orange light %q4 middle conveyor light column

orange light
middle conveyor green light %q5 middle conveyor light column

green light
switch conveyor forward %q6 switch conveyor motor forward
switch conveyor backward %q7 switch conveyor motor

backward
switch conveyor brake %q8 switch conveyor brake
arrival conveyor forward %q9 arrival conveyor motor forward
arrival conveyor backward %q10 arrival conveyor motor

backward
arrival conveyor brake %q11 conveyor motor brake
arrival conveyor orange light %q12 arrival conveyor light column

orange light
arrival conveyor red light %q13 arrival conveyor light column

red light
arrival conveyor green light %q14 arrival conveyor light column

green light
Input

Output

Virtual Universe 55

List of UNITY PRO variable references

Virtual Universe 56

Robot and bottles
This project is located in the “samples\robot and bottles” sub-directory of
the Virtual Universe installation directory. It is accompanied by an .AGN
file.

This project illustrates the following functionalities in particular:

- Modification of the scale and position for spring simulation;

Virtual Universe 57

- Setting of joints;

Virtual Universe 58

- Simulation of robot motors by modification of joint limits. Controlling
by numeric variables (a variable associated to each axis) managed
by a script for each motor.

- Gripping: nothing in particular to do, closing of the clamp is
sufficient.

Virtual Universe 59

- Simulation reset after movement of the last bottle.

Virtual Universe 60

Operation
Two numeric values are used for each of the axes. One gives the current
position, the other is used to set the position to reach. If the current
position is near the requested position, then the movement has been
performed.

List of AUTOMGEN / AUTOSIM variable references
Symbol Variable Comments
request level 1 %mw200 Position requested for axis 1
position level 1 %mw201 Current position for axis 1
…
request level 5 %mw208 Position requested for axis 5
position level 5 %mw209 Current position for axis 5
request finger 1 %mw210 Position requested for clamp finger 1
position finger 1 %mw211 Current position for clamp finger 1
request finger 2 %mw212 Position requested for clamp finger 2
position finger 2 %mw213 Current position for clamp finger 2

Input

Output

Virtual Universe 61

NXT robot
This project is located in the “samples\nxt” sub-directory of the Virtual
Universe installation directory. It is accompanied by an .AGN file.

Virtual Universe 62

This project illustrates the following functionalities in particular:

- Simulation of a mobile robot;

Virtual Universe 63

- Simulation of 2 variable speed motors modulation of the speed and
brake controlled by 2 Boolean variables and a numeric variable.

Virtual Universe 64

- Analog proximity sensor simulated by a penetration test.

Virtual Universe 65

- Destruction of joints.

Virtual Universe 66

Operation

The two wheels are controlled by motors whose power is controlled
by numeric variables. Two boolean variables are used to control the
motor in each direction.

List of AUTOMGEN / AUTOSIM variable references

Symbol Variable Comments
motor#1 power %mw200 Motor 1 power
motor#2 power %mw201 Motor 2 power
sensor %mw203 Proximity sensor
motor#1 direction 1 %q0 Motor 1 Direction 1
motor#1 direction 2 %q1 Motor 1 Direction 2
motor#2 direction 1 %q2 Motor 2 Direction 1
motor#2 direction 2 %q3 Motor 2 Direction 2

Input

Output

Virtual Universe 67

6 axis ABB Robot
This project is located in the “samples\abb robot” sub-directory of the
Virtual Universe installation directory. It is accompanied by an .AGN file.

This project illustrates the following functionalities in particular:

- Simulation of a 6 axis robot.

Virtual Universe 68

- Simulation of a motor by PID.

Virtual Universe 69

Virtual Universe 70

- Inverse kinematic calculation of the robot.

Virtual Universe 71

- Simulation of a conveyor;

Operation
Six numeric variables are used to select the destination and orientation
of the robot clamp. The precision of the destination position is also given
by a numeric variable. The higher the requested precision, the longer the
time to end the movement, inversely, less precision makes it possible to
chain the movements faster to the detriment of precision. A control
numeric variable is used to run the movement, a response numeric
variable is used to know if the movement has been performed. The
coordinate system is the one really used by the real ABB robot.

Virtual Universe 72

List of AUTOMGEN / AUTOSIM variable references
Symbol Variable Comments
xrobot1 %mf200 Destination X coordinates
yrobot1 %mf201 Destination Y coordinates
zrobot1 %mf202 Destination Z coordinates
arobot1 %mf203 Destination A angle (in degrees)
brobot1 %mf204 Destination B angle (in degrees)
crobot1 %mf205 Destination C angle (in degrees)
deltarobot1 %mf206 Requested precision
cmdrobot1 %mw200 Command: going from 0 to 1 runs

the movement
statrobot1 %mw201 Result: 1=movement performed;

<0=error (-7=position impossible to
reach)

close clamp %q0 Closes the clamp
Input

Output

Virtual Universe 73

Vacuum robot
This project is located in the “samples\vacuum robot” sub-directory of the
Virtual Universe installation directory. It is accompanied by an .AGN file.

Virtual Universe 74

This project illustrates the following functionalities in particular:

- Random positioning of objects;

Virtual Universe 75

- Simulation of a vacuum.

Operation
The robot is controlled by two motors, in turn with binary control by 2
outputs each (one output for each running direction). A contact sensor
detects collisions with objects, a proximity sensor is used to obtain
information on the absence of floor in front of the robot.

List of AUTOMGEN / AUTOSIM variable references
Symbol Variable Comments
forward motor 1 %q0 Motor 1 forward
backward motor 1 %q1 Motor 1 backward
forward motor 2 %q2 Motor 2 forward
backward motor 2 %q3 Motor 2 backward
collision %i0 Collision sensor
ir sensor %i1 No floor in front of robot sensor

Input

Output

Virtual Universe 76

Manipulator with cylinders and suction cup
This project is located in the “samples\cylinders” sub-directory of the
Virtual Universe installation directory. It is accompanied by an .AGN file.

Virtual Universe 77

This project illustrates the following functionalities in particular:

- Simulation of the suction cup;

- Position sensors for the cylinders;

Virtual Universe 78

Virtual Universe 79

- Simulation of the cylinder with rod return via spring;

Virtual Universe 80

Virtual Universe 81

Operation
The arm is composed by two single acting cylinders. A suction cup is
used to grip the bottles. Two conveyors manage the arrival and
departure of the bottles.

List of AUTOMGEN / AUTOSIM variable references
Symbol Variable Comments
vacuum %q0 Starts the vacuum
go down %q1 Extracts the vertical cylinder
go out %q2 Extracts the horizontal cylinder
top %i0 Vertical cylinder retracted
bottom %i1 Vertical cylinder extracted
in %i2 Horizontal cylinder retracted
out %i3 Horizontal cylinder extracted

Input

Output

