V1.002

User manual

©opyright 2010 IRAI

Contents

INEFOAUCTION ... e 9
NECESSANY SYSIEIM ... 9
(@ (o= 10 2= 1 (o] o RS TTTT 9
INSTAIALION ... 10
o] 0] 10
Registering the lICENSEoiiiiiii e, 10
Installation IN @ NEIWOIKoovveiiiii e 11
ENVIFONMENT ... 12
Browsing and iNtEracCtionsccoeveieeiiiiiiiiiiiiie e 15
The different types of ODJECEScooiiiiiiiii e, 16
011V ST 16
WOIIA. .t e e eaaeea 16
(OF=10 0[] - RSP PTTTRPPPN 16

T | PP PTT 16

D SPIILES et a e 16
BERNAVIOIS ..o 16
bR [l o0 (o1 T | £ 17
3D rendering and SOUNASuuuuiiiiiiiiieieceeeiiir e 17
PRYSICS ENQINE ... 18
DIAIOGUE ... aaaaaa 19
00T ox 1o O TTRT 19
RUN/STOP MOUE ...t e e 19
AV [=To [T W g g b=V = o [T RSP 20
e 0T 0L 1TSS 20
(011 ST PP PSURPRPPTTRN 20
(@] o] T=Tox 10 o R 20

D 1V SRR 20
Server name or [P addresSsS........ooovvveveiiiiiiiiii e 20

Virtual Universe

Driver M340 MOUE ..o 20
(@] 110 1 1SS 21
AUOMALIC RUN ..o 21
Variable and state displayceeeiiiiiiiiiiiiii s 21
WIFETTAIME ... 21
Debug mode for the physics engine..........cccccceeiiiiiiiiiiiieiiiicccenn, 21
WOIIA. .. et e e e e e e eeanaa 21
N E= T8 [T 21
DISPIAY ettt 21
WINAOW SIZE...ciiiiiiiiee e 21
Editable SIZE ..o 21
Background COIOTcooiiiiiiiiicie e 21
Environment light.........coooo 22
Show the shadingueeiiiiiiiii e, 22
Number of images displayed per second (read only)................... 22

Use the Shader ... 22
Maximum number of images per secondcccoeevvvveveviviinnnnnnn. 22

(OF=10 0[] - PSP 22
N E=T 0 [T 22
0] 11 o PP PTT 22
(@10 =T o[o L0171 0] o PO 22
[T | o | PP PSURPPPPPTTN 23
N E=T 0 [P PTTRPPTRRPIN 23
0] 11 o PSP 23
(©0] o] g 1 01T = (oS 23

1 T0 Y o] 11 1= TSRS 23
N E=T 0 [P PTTRPPTRPPIN 23
D =\, T S UURPPPPUPRTT 23
POSItION QNG SIZE...ciiiiiiiiiie e 23

Virtual Universe

Position and size (CUrrent ValU@S)ccooeeeeevieiiiiiiiiiiinee e e e 23

IMAEEITAL ... 23
Material (CUrrent Values)coooveiiiiiiiiiiii e 23
BIOWSING e 24
NoOt selectable ... 24
PRy SICS e 24
Use the phySiCS €NgINEuuviiiiiiii e 24
USE QFAVILY ceeeeiiiiieie ettt e e 24
The user can apply a force to the objecCt.........ccccoeeeeiiiiiiiiiiiennnnnn. 24
TYPE OFf DOAY .. 24
VIS .ttt e e e e e 26
INEIIA FOICE ..o 26
Automatically adjust the center of massS.........ccccceeeeeeiviiiiiceeennnnn. 26
COETfICIBNTS... oo 26
SPEEA. .. 26
PeNELIAtION......uueiiiiie e 26
Physical joint with the parentccooooviiiii 26
B [0 | o | S UUR RPN 26
Y01 o To 11 1o o R 27
ACHON TINE e 27
] T 7R 27
JOINE POWET ...ttt e et e e e e e e e e e eeeeennnnnns 27
JOINt STrENGLN .. 27
Joint breaking Strength ... 27
Physical joint with another 3D Sprite..........coovviiiiiiiiii e 28
P2 IS o | =T 28
BERNAVIOIS ... 29
N E=T 0 [P PTTRPPTRPPIN 29
T WP, BEC. e e 29
BeNAVION tYPE ..o 29

Virtual Universe

SHENGEN e 32

APPIY 10 DIOtNErS.. . e 33
Position / Rotation / ColOr.........coiiiiiiiieici e 33

LK S e 33
INItIAl VAIUE ..o 33
Current value, internal current value, conversion of data, write

0 T0T0 = PR 33
Names of other 3D SPriteSuvuiiiiiiie e 33

Use the value of this Behavior.............ocooiiiii e 33
EXtErnal liNKeeeie e 33
Y0 11] [0 S 3 34
MINIMUM diSTANCE ... 34

S Tox o PSSP 34

00T ox 1o P TTPTR 35
WIIEE @ SCHIPL ...ttt e e e e e e e e e eernannns 36
SPECIfIC FUNCHIONS ... 37

3D SPrite NAME SYNEAX ..uuiiieieiiiiieieiiiiiia e e 37
Access functions to values associated to a 3D Sprite 38
Behavior Nname SYNtaXuuueiiiiiiiiiieeeic e 39
Access functions to values associated to Behavior 39
Access functions to values associated to the Universe 40

Other FUNCLIONS ... e 41

(@ o] 1=To3 1 o] =1 o V2SR SRURPPPPRPPR 43
EXtErnal lINKS ..ooeeieeiii e 43
Current value and internal current valueceeeiiiiiiiiiiceeeiiiinn, 43
Reading a Virtual Universe value from the external software 44
Writing an external software value to Virtual Universe...................... 45
Access to the external links of an object group..........cccceeiiviiiiiiiiieiinns 46
EXAMPIES ... 47
(701011720] PP 47

Virtual Universe

(@ 01T =1 0] o [53

List of AUTOMGEN / AUTOSIM variable references........cccccccceenn... 54
List of UNITY PRO variable references.........ccccccceeiiiiiiiiiiiiiiiiiiinnnn. 55
RODOt and DOLLIES... ..o 56
(@] 0] = 110 o [T 60
List of AUTOMGEN / AUTOSIM variable references........cccccccceenn... 60
N D QI 0] 01 | ST SURPPPPPRTPN 61
(@] 0] = 110 o [T 66

The two wheels are controlled by motors whose power is controlled
by numeric variables. Two numeric values are used to control the

MOtOr iN €acCh dIr€CHION.ceveiiiiiiiie e 66
List of AUTOMGEN / AUTOSIM variable references.......ccccccccceeenn... 66
6 axiS ABB RODOL.......cuiiiiiii i 67
(@] 0] = U1 To] o [T 71
List of AUTOMGEN / AUTOSIM variable references.......ccccccccceenn... 72
VaCUUM FODOT.o 73
(@] 0] = 110 o [T 75
List of AUTOMGEN / AUTOSIM variable references........ccccccceeenn... 75
Manipulator with cylinders and SUCLION CUP.........cooevviviiiiiiiiiieeiieeeeeiiis 76
(@] 0] = U1 To] o [81
List of AUTOMGEN / AUTOSIM variable references.......cccccccceeenn... 81

Virtual Universe

Introduction

Virtual Universe is a 3D world simulator dedicated to automaton and
robotics. By integrating the latest technologies in 3D rendering, 3D
sound, physical simulation and script, Virtual Universe can be used to
create ultra realistic simulations. Virtual Universe can communicate with
automaton software workshops (AUTOMGEN, UNITY, etc.) so that the
virtual systems can be controlled like real systems.

Necessary system
Virtual Universe operates with the following operating systems: Windows
XP, Windows Vista and Windows 7.

Virtual Universe is compatible with AUTOMGEN 8.015 or later versions.

Organization

,,,f———f:;;;;N‘o“ LS\

Virtual Universe

Installation

To install Virtual Universe, simply run the execution of the installation
package which has been delivered to you on a CD-ROM or by
downloading. Visit our website (www.irai.com) to download the latest
updates for Virtual Universe.

License

Registering thelicense
Virtual Universe operates as a demo version (for a 40 day trial) as long
as you haven't registered the license.

To register the license, click on the “License” button in the Virtual
Universe configuration window.

License

— Statuz of license in this place

" alid wersion ;I
Sernial number : STEPH 234275

AT OS]0

WIRTUAL UMMERSE

A8

Targets : All

" o

Enter a license Change a licenze | kove the icenze to another place |
Connect ta a netwark, licenze | [izconnect from the netwark: licenze | Cloze I

Click on the “Enter a license” button.

Virtual Universe

10

Enter or change a protection

Y'ou are about to zave or change vour user license [after requesting authorization to use the information iF necessany).
Your uzer code must be provided to IRA] which will then zend vou a validation code.

Yau can zend vaur uzer cade by Telephone : [33] 4 66 54 91 30,
- by Faw: [33] 4 B6 54 91 33
- or by e-mail : francoize. zaut.irai@orange. fr

The following information must be provided: pour complete addrezs and telephone number and order reference or delivery
note if required.

Uzer code. careful : '8' iz ZERO and ‘0* iz the letter
Im IZEBNU IEiB?G IZIEEQ II.ILNTB I'?GIGG IGZIGE IEI.IFE"F IULHBL IHPGHS‘ IGB

Paste a
Fead a Copy the user e .
Sqctess | vosionsode| coteioths | "oilencode
from a file clipboard .
clipboard

Y alidation code

I I D D R P e e e
Cancel |

Send the user code which is then generated by e-mail to the address
francoise.saut.irai@orange.fr

You will receive a validation code by e-mail which you then enter in the
“validation code” areas, then click on “Validate” to validate the license.
You have 20 days after the user code is generated to enter the validation
code.

Installation in a network

The Virtual Universe files can be installed on a file server. The licenses
can also be managed by a network license manager (see the specific
network license manager).

Virtual Universe

Environment
When Virtual Universe is started a 3D world rendering window appears:

_iBix)

The RUN/STOP button is used to run or stop the simulation.

The SETUP button opens or closes the configuration window:

Virtual Universe 12

Setup ¥irtual Universe 3 |

Bl
= 9 Witorld

Light

“ .« Camera
(—

The items of the
simulation: Camera,
Light, Obijects, etc.

B Connection
Diriwver MNone

Server name ar IP adi localhost

I

Properties of the
selected item

Open the media Show or hide the

manager for media extended properties

files used in the of objects

project: 3D files,

bitmaps and

sounds. RIN/STOP mode

]mﬂnﬁm%r I [T Expert mode

i~ Project Browse

Save | Saveas| Load| mMew | | @ byobiects by properties

License
/ / virbual Universe ¥1.0028 - (C) \aI

selection

il

Run

Project files Select browsing / \
management mode by objects list Manage the license
or by properties list

Virtual Universe

13

Setup Yirtual Universe ﬂ

il . E‘l Marme |
= Universe
i . world Yatld

Light

o Camera

=1 warld

= Mame
+ Display
Zamera
Light
Sprite 5d
Behavior

&-E-E-E

Open mediamanager | [Expert mode i

i~ Project - 1 Browse

Run

Save | Saveas| Load| Mew | | O byobiects % by properties i
| | | | License

Wirbual Universe ¥1.0028 - (C) IRAL y:

The same window in “by properties” mode is used to obtain the list of
values of the same property for an object group. In this mode, the parent
of the objects needs to be selected on the upper left and the property on
the lower left.

Virtual Universe

Browsing and interactions

The following commands are used to browse and in 3D World or to
interact with these:

- Mouse wheel or keyboard Up and Down keys: Zoom

- Right mouse button pressed and movement of mouse: orbit around
the selected object.

- Movement of the mouse inside the rendering window: automatic
selection of the browsed object to orbit around.

- Left click of the mouse on an object in STOP mode: selection of the
object.

- Left mouse button pressed on an object and movement of mouse
in RUN mode: interaction with the selected object: push, pull,
move.

Virtual Universe

15

The different types of objects
The objects are organized hierarchically in child/parent.

Universe
This is the parent object of the entire Virtual Universe project, it contains
one or more Worlds, its properties set which automaton Virtual Universe
will dialogue with. The Universe object is always the parent of the
hierarchy.

World

This is a subset of the Universe. Its properties define the rendering
window aspect among other things. The World objects are always the
children of the Universe.

Camera
The Cameras represent a user’s viewpoint in a 3D world. The camera
objects are children of the World objects or 3d Sprites.

Light

The Lights are necessary, just like in the real World for being able to
observe the objects. The Light objects are children of the World objects
or 3d Sprites.

3D Sprites

These are the objects and their multiple physical and visual
characteristics. 3D Sprite objects are children of the World objects or 3D
Sprites.

Behaviors

Associated to a 3D Sprite or a Light, they will dynamically change their
properties: for example to change their positions or their colors or even
execute a script which can act on these objects. A Behavior can act as
an engine to transmit a force to a 3D Sprite. The Behavior objects are
children of the Light objects or 3D Sprites.

Virtual Universe

Basic concepts

3D rendering and sounds

The rendering engine used by Virtual Universe is Irrlicht which supports
via DIRECTX 8 or 9 or OPENGL (based on what is available on the PC).
The role of the 3D rendering engine is to display the 3D world objects lit
by the Lights based on the viewpoint set by a camera. The Cartesian
coordinates X/Y/Z govern the 3D world.

Virtual Universe

17

An axis identifier is displayed in the rendering window when the
configuration window is open.

umalmerse _iBix)

The 3D sounds increase the realism of the simulations. The sounds are
emitted in the virtual world at the position of the objects and are thus
perceived based on the camera position.

Physics engine

Newton Physic Engine is the physics engine used by Virtual Universe for
physical object management: for example gravity, but also much more
than that.

To get the most out of the physics engine, it is important to be familiar
with the basic concepts of physics, such as forces, velocities, frictions,
mass, etc.

Virtual Universe

18

The physics engine parameters are associated to each 3d Sprite. A 3d
Sprite can be managed or not by the physics engine. For example, an
object only used visually may not be managed by the physics engine.

Dialogue

The dialogue with an external software is one of the essential elements
used to control the simulations. The external software type and the
connection parameter settings are found in the Universe properties. The
links are then set in Behaviors. The Behavior type will determine the
dialogue direction (reading from or writing to the external software).

Script
Scripts written in basic language can be associated to any object by a
Behavior.

RUN/STOP mode

Virtual Universe can be in STOP mode (simulation stopped and
initialized) or RUN (simulation in progress) mode. In RUN mode, the
physics engine and dialogue with the external software are enabled. The
Behaviors and scripts are enabled.

In RUN mode, rendering is performed as quickly as possible based on
the PC performance, the physics engine and the scripts are called every
10 ms.

Virtual Universe

19

The objects possess a double entry for certain parameters (for example
their positions). The first parameter set corresponds to their initial values,
the second set to their current values. In STOP mode, the initial values
are recopied in the current values.

Media manager

This is used to store the media files (3D files, bitmap files and sound
files) used in a project. The objects can use files found in the media
manager or outside it. The files located in the media manager will be
saved in the project file. This latter method is recommended if the project
needs to be shared or executed on another PC.

Properties

Universe
Connection

Driver
Determines the connection with an external software?

This is the case of connection with AUTOMGEN or AUTOSIM

Server name or IP address

Use “localhost” if the external software is run on the same PC. If the
software is run on another network PC, enter its IP address or its name
as seen on the network.

Port

Must be the same as the one selected in the AUTOMGEN / AUTOSIM
properties in the TCP/IP Connection Execution tab, server, port.

This is the case of connection to UNITY (simulator PLC or API M340)

Driver M340 mode
Local simulator: Simulator PLC run on the same PC, API connected by
USB: an APl M340 connected to a USB port, APl or simulator on IP : an

! External software is the generic term used to define the software with which Virtual Universe
dialogues

Virtual Universe

20

API connected by Ethernet or a simulator run on another PC connected
to the network. In this case, document the IP address of the API or PC.

Options

Automatic RUN
Causes it to go to RUN when the project is opened.

Variable and state display
Displays the variable names and the states for the Behaviors in the
rendering window referred to a variable of the external software.

Wireframe
The group of project 3D Sprites will be displayed in “wireframe” mode if
true.

Debug mode for the physics engine

If true, the volumes used by the physics engine are displayed in the
rendering window (yellow lines). This is very useful in the development
phase of a project using the physics engine to display the volumes
handled by the physics engine.

World

Name
Used to indicate a World by its name.

Display

Window size
Determines the rendering window size in pixels.

Editable size
If true, the window size can be edited by the user.

Background color

Determines the color displayed for the background on the rendering
window.

Virtual Universe

Environment light
Determines the color and intensity of the environment light (light lighting
the group of objects no matter what their positions and their orientations).

Show the shading

If true, this manages display of shading, it requires that the properties of
objects relative to shading also be positioned. The display of shading
may significantly slow down the rendering.

Number of images displayed per second (read only)
Indicates the number of images displayed in a second in the rendering
window.

Use the shader
Evolved 3D displaying technique reserved for specialists.

Maximum number of images per second
If different than O, this limits the number of images displayed per second
to the indicated value. Used to preserve the processor time.

Camera

Name
Used to indicate a Camera by its name.

Position

Determines the initial position of the Camera by the target coordinates
(related to the Camera) as well as a rotation on the X and Y axes and a
zoom.

Current position
The same as above but for the current position.

The current position can be recopied in the initial position by clicking on
the down arrows appearing to the right of the initial position elements
and selecting “Copy from current values”.

Virtual Universe

22

Light

Name
Used to indicate a Light by its name.

Position
Used to define the coordinates and direction of the Light (direction is only
used for the Spot and Directional type lights).

Color, type, etc.
Determines the Light characteristics.

3d Sprite

Name
Used to indicate a 3d Sprite by its name

Drawing
Determines the 3D file used to set the 3D Sprite geometry and any
texture files.

Position and size

Sets the position, rotation (as well as the axis) and the initial scale of the
3D Sprite. Rotations are expressed in degrees (from — 180 to + 180
degrees).

Position and size (current values)

The same as above but for current values, with more: the translation and
relative rotation (based on the parent 3D Sprite), as well as the position
of the object center and the absolute rotation based on the World.

Material

These properties group the characteristics of the material used to display
the object. These characteristics are directly linked to the Irrlicht
rendering engine.

Material (current values)
The same as above for current values.

Virtual Universe

Browsing

Not selectable
If true, the 3D Sprite does not affect browsing when it is browsed by the
mouse cursor.

Physics
Groups the properties of an object concerning the physics engine.

Use the physics engine

If true the 3D Sprite will be handled by the physics engine, if not, the
object will be completely ignored by the physics engine, in other words,
the object will be only displayed in the 3D world, but it will have no
physical interaction with the other objects.

Use gravity
If true the 3D Sprite will be submitted to gravity. Its mass cannot be zero.

The user can apply a force to the object

If true, the user can, in RUN mode, act on the object by keeping the right
mouse button pressed when the cursor is on the 3D Sprite and by
moving the cursor.

Type of body
Determines the 3D Sprite geometry type for the physics engine

- Any: a convex shape obtained from the 3D Sprite geometry;
- Box: a rectangle parallelepiped;

- Sphere: a sphere;

- Capsule: a capsule.

Attention, the “Any” type if used with a complex 3D Sprite (possessing
very numerous faces), may use a lot of resources for the physical
simulation. So, if possible use one of the other types.

Virtual Universe

It is possible and often useful during the set up phases to display the
geometries handled by the physics engine by enabling the “Debug mode
for the physics engine” option in the Universe properties. Example:

% ¥irtual Universe

The volumes handled by the physics engine appear in yellow.
Solution in the case of a complex 3D Sprite requiring an any shape:

- set a simplified 3D Sprite shape (with fewer facets), give it the
“invisible” and “managed by physics engine” attributes;

- preserve the complex 3D Sprite shape and add it as child with the
“visible” and “not managed by physics engine” attributes.

This solution is used in the “Conveyor” example.

Virtual Universe 25

Solution in the case of a 3D Sprite requiring a concave physical shape:
set several convex shapes and link them by joints.

Mass
The mass of the object. A mass of O freezes the object.

Inertia force
Determines the amount of energy needed to turn the object on each of
the axes.

Automatically adjust the center of mass

If true, the object’s center of mass is automatically recalculated based on
the 3D Sprite geometry. If not, the center of mass is the point of the 3D
Sprite’s coordinates 0/0/0.

Coefficients...

Determine the friction, elasticity and suppleness of objects. A value of 0
uses the physics engine default parameters. The coefficient used by the
physics engine between an object A and an object B is the combination
(product) of the coefficients of object A and object B.

Speed
Used to access the total and local speed values of the object. These
values are only available for objects managed by the physics engine.

Penetration

If true, the collisions of the object are not managed. For objects linked by
joints (see below) the collisions are automatically deactivated between
two objects linked by a joint.

Physical joint with the parent

Determines the type of joint between a child 3D Sprite and its parent.
The two 3D Sprites must be managed by the physics engine. They can
be submitted to gravity or not.

Joint
Determines the joint type:

- Pivot;

- Sliding

Virtual Universe

- Fixed.

Pivot position
Determines the x/y/z position of the link with the parent object for pivot
links.

Action line
Determines the joint action line for Sliding (translation axis) and Pivot
(rotation axis) joints.

Limits...

Determines the joint minimum and maximum limits. If these two values
are equal, then the joint has no limits (rotation or translation without
limits).

Joint power
Determines the joint rigidity.

Joint strength
Gives the value of the strength supported by the joint.

Joint breaking strength

Strength beyond which the joint will be automatically destroyed. If O, this
function is disabled. This is used to simulate the destruction of a link
between two objects (see the “NXT” example).

Virtual Universe

27

Physical joint with another 3D Sprite

Set of identical parameters but the link is created between the 3D Sprite
and another 3D Sprite rather than the parent 3D Sprite. The other 3D
Sprite is indicated by its name. This second joint is used to create
circular models (see the “ABB Robot” simulation):

2D Sprite
Used to display a 2D bitmap at the 3D Sprite position. See the dust
management in the vacuum robot example.

Virtual Universe

28

Behaviors

Behaviors are the elements which “give life” to the simulation. They also
define the links between the simulation and external software.

They are closely tied to the physics engine and will be able to
communicate strengths to the 3D Sprites and also manipulate the return
physical data (for example the speed of an object).

For a realistic simulation, actions by application of strengths should have
priority over actions directly changing the position or orientation of the 3D
Sprites.

A Behavior can also be used simply for storing a value during simulation.
The scripts will be able to access this value in read and write. Behaviors
can be considered like “global variables” for the application.

Name
Used to indicate the Behavior.

Type, etc.

Behavior type
One of the following types for Behaviors associated to a Light:

- None, the behavior does nothing;
- Writes the intensity of the Light;

o0 The Behavior value determines the light intensity of the
associated Light.

One of the following types for Behaviors associated to a 3D Sprite:
- None, the behavior does nothing;
- Applies a force or torque;

o All of these Behavior types are used to apply a strength or
torque to the object. The Strength parameters determines the
strength direction, the identification can be global or local
(based on type). The strength will applied based on the
current value of the Behavior. The strength applied will be the

Virtual Universe

29

parameterized strength multiplied by the current value of the
Behavior.

- Applies a local force to the 3D Sprites in contact;

o Applies a strength to all of the 3D Sprites in collision with the
associated 3D Sprite. The typical application is the simulation
of a conveyor belt. See the “ABB Robot” example for an
illustration. « Name/s of other 3D Sprites » is used to limit
the action of this Behavior to a group of 3D Sprites (see
below). Collision tests should only be used when strictly
necessary.

- Applies a braking force or braking torque;
o ldentical but the applied strength will act like a brake.
- Defines the attraction force of the 3D Sprite;

o0 The 3D Sprite attracts other 3D Sprites. . “Name/s of other
3D Sprites” is used to limit the action of this Behavior to a
group of 3D Sprites (see below). “Attraction” is used to set
the attraction force, “Attraction distance” changes the action
area of this attraction (infinite if 0). The attraction strength is
also proportional to the square of the distance. This is
illustrated in the “Manipulator with cylinders and suctions”
example.

- Writes the 3D Sprite position and rotation;

o0 Modifies the position or orientation of a 3D Sprite. For
example, useful for taking an object to the initial position (see
the “Conveyor” example).

- Writes the 3D Sprite position and rotation in collision;

o Identical but writes the position and rotations of all the 3D
Sprites in collision with the parent 3D Sprite. The “Name/s of
other 3D Sprites” parameter is used to limit the action of this
Behavior to a group of 3D Sprites (see below). Collision tests
should only be used when strictly necessary. See the “ABB
Robot” example for an illustration of this Behavior.

Virtual Universe

30

Write the 3D Sprite environment color;

o Changes the parent 3D Sprite environment color if the
current Behavior value is different from 0. The value to apply
iIs one of the Behavior parameters (see below). See the
“Conveyor” example for an illustration.

Execute a script;

o0 Executes a script if the current Behavior value is different
from 0. Read the chapter on Scripts.

Play a sound;

0 Used to play a sound file in a loop or just once. The 3D
sound will be perceived as if coming from the parent 3D
Sprite. The sound is played if the current Behavior value is
different from 0. In addition, the current behavior value can
modulate the volume of speed of the played sound. The
examples illustrate this by modulating the played sound
speed to simulate the sound of engines based on the rotation
speed.

Generic reading;

o0 The Behavior will only read an external software variable. For
example, this value can be used in a script.

Reset;

o0 Reset the simulation to its initial state if the current Behavior
value is different from 0. The “Robot and bottles” example
illustrates this type of Behavior.

Collision test with other 3D Sprites;

0 Used to obtain the number of collisions between the parent
3D Sprite and the other Sprites of the current World. The
“Name/s of other 3D Sprites” parameter is used to limit the
action of this Behavior to a group of 3D Sprites (see below).
Collision tests should only be used when strictly necessary.

Virtual Universe

31

See the “Conveyor” example for an illustration of this
Behavior.

Test if the joint is destroyed;

0 Used to obtain the state of the joint between the 3D Sprite
associated to a Behavior and its parent.

Obtain penetration with other 3D Sprites;

o Gives the penetration depth between the 3D Sprite
associated to the Behavior and the other 3D Sprites. This use
Is typically the proximity sensor. The “Name/s of other 3D
Sprites” parameter is used to limit the action of this Behavior
to a group of 3D Sprites (see below). Penetration tests
should only be used when strictly necessary. See the “NXT”
example for an illustration of this Behavior.

Obtain information on a 3D Sprite;

0 Used to access the dynamic values of a 3D Sprite. The
“Select information to read” parameter determines the value.

Joint position test;

0 Used to test whether a joint value is between two limits. The
typical use is the simulation of a position sensor on an
actuator. “Min position” and “Max position” are the limits. This
Is illustrated in the “Manipulator with cylinders and suctions”
example.

Generic writing;

o0 The Behavior will only write an external software variable. For
example, this value can be calculated in a script.

Strength
Defines the strength value on each of the axes for the involved Behavior
types.

Virtual Universe

32

Apply to brothers

If true, the behavior is applied to the concerned 3D Sprite and all the
brothers. See the “Conveyor” example for an illustration of this
parameter.

Position / Rotation / Color
Values used for the Behaviors which need them.

Links
Based on the selected driver in the Universe properties, the definition of
an external variable name will appear specific to each external software.

Initial value

This will be recopied in the current value when going to simulation RUN
mode. It can be used to permanently enable a Behavior. For example, a
script can be unconditionally executed from simulation running by putting
this property to 1.

Current value, internal current value, conversion of data, write mode
The Behavior values and the conversion mode, see the “External links”
chapter for more information.

Names of other 3D Sprites

Certain Behaviors can use a group of 3D Sprites. By default, if this
parameter is blank, all of the current World 3D Sprites are concerned. By
documenting this parameter, the range of the Behavior is limited to the
3D Sprites whose name starts with the text contained in it. For example,
“DUST” will limit the Sprites to those whose name starts with “DUST".
See the “Vacuum robot” example for an illustration of this.

Use the value of this Behavior

If not blank, this area gives the name to a Behavior whose value will be
read and recopied in the current internal value. See the “Script” chapter
for more information on the name conventions for Behaviors.

External link
If true, the Behavior will be listed in the list of external links (see the
“External links” chapter).

Virtual Universe

33

Sounds

Minimum distance
Used to edit the ratio between the volume sound and the distance of the
object generating the sound and the camera.

Script
See the following chapter

Virtual Universe

34

Script

The concept of Script is one of the most powerful tools of Virtual
Universe. It is used to integrate very sophisticated treatments to the
simulation. Scripts are activated by Behaviors. Each Behavior can
activate a script which will be a completely autonomous task. The Script
is executed when the current associated Behavior value is different from
0 and the script has not ended. The script ends if the last execution line
Is reached or the END instruction is executed. Basic language is used.
Specific instructions can be used to access the values associated to
objects in read or write.

The script execution priorities can be edited in the properties of the
associated Behavior. The “Normal” priority corresponds to executing a
script element every 10 ms., the high priority corresponds to executing all
the scripts every 10 ms. Other lower priorities are also accessible. High
priority should not be used unless necessary (or a short script): it uses
up more processor time.

The Script is based on BeeBasic software.

For more information, see the help file basic_api.chm located in the
Virtual Universe installation directory, or click on the “Basic Help” button.

Virtual Universe

35

Write a script
Scripts are written in the Behaviors “Script” parameter. A script editing
window opens.

Script editor |

Scripk

n o

ojo

Help on Functions

GethalSpritesd] <parametername =) return a sprite3d value ﬂ
In

parametername: string
can be ... F=optionnal
{[«3d sprite name =], - <parameker =
if no sprite name is used, the parent 3d sprite of

<3d sprite name = is the name of the 3d sprite._lll
4| | b

A

An editing area as well as a help button on the specific functions is
displayed. The “Script Error” Behavior element is used to obtain an error
possibly encountered in script analysis (the script in question is not
executed in this case but the simulation can still go to RUN mode). If an
error is detected, the line number is displayed so that the error can be
found in the editor (the line and column numbers are displayed at the
bottom of the editing area).

The “Script Output” Behavior element displays the outputs generated by
the PRINT basic function. These outputs are also displayed in the

Virtual Universe

36

rendering window at the location of the 3D Sprite associated to the
Behavior.

Specific functions
The specific functions are used to access the Virtual Universe values
associated to objects in read or write.

3D Sprite name syntax
The name for reference to 3D Sprites must comply with the following
syntax:

- a name without path: it will search for the first 3D Sprite whose
name starts with this text in all the current World 3D Sprites

- ..\<name>: a named 3D Sprite, brother of the parent 3D Sprite of
the Behavior;

- <name 1>**\<name2> : a 3D Sprite hamed name2, descendant of
a 3D Sprite named namel.

- <path\name> : a 3D Sprite corresponding to the path.
These names are not case sensitive.
Examples:

my sprite: indicates the first 3D Sprite whose name starts with the text
“my sprite”.

.\another sprite: indicates the 3D Sprite named “another sprite”, brother
of the parent 3D Sprite of the Behavior;

robot1**\level3 : indicates the 3D Sprite named “level3” descendant of
the robot 1 3D Sprite.

.\..\one more sprite: indicates the 3D Sprite hamed “one more sprite”, a
brother of the parent 3D Sprite parent of the Behavior;

Note: making reference to relative names (using relative paths) rather
than to absolute names makes it possible to have easy to duplicate
objects without having to change the links. The “ABB Robot” example
illustrated here.

Virtual Universe

37

Access functions to values associated to a 3D $prit

GetV al Sprite3d(<parameter>) returns a value associated to a 3D Sprite

<parameter> indicates the parameter. It can indicate a 3D Sprite by its
name. If this is not the case, the parent 3D Sprite of the Behavior is
used.

The syntax is [<3D Sprite name>].<parameter name>
Examples:

POSX: position X of parent 3D Sprite

[BOX3].SPEEDZ speed on axis Z of the 3D Sprite named BOX3
List of possible parameters:

POSX, POXY, POSZ : absolute position in the 3D World.
ROTX, ROTY, ROTZ : absolute rotation in the 3D World.
RELPOSX, RELPOSY, RELPOSZ : relative position based on the parent
3D Sprite. Only valid if the object is managed by the physics engine and
IS linked to a parent 3D Sprite by a joint.
RELROTX, RELROTY, RELROTZ : relative rotation based on the parent
3D Sprite. Only valid if the object is managed by the physics engine and
is linked to a parent 3D Sprite by a joint.

SCALEX,SCALEY, SCALEZ : scale.
FORCEX, FORCEY, FORCEZ : applied strength.
TORQUEX, TORQUEY, TORQUEZ : applied torque.

FORCEBRAKEX, FORCEBRAKEY, FORCEBRAKEZ : applied brake
strength.

TORQUEBRAKEX, TORQUEBRAKEY, TORQUEBRAKEZ : applied
brake torque.

SPEEDX, SPEEDY, SPEEDZ : Speed
ROTSPEEDX, ROTSPEEDY, ROTSPEEDZ : Angular speed

Virtual Universe 38

RELSPEEDX, RELSPEEDY, RELSPEEDZ : Relative speed

RELROTSPEEDX, RELROTSPEEDY, RELROTSPEEDZ: Relative
angular speed (at parent)

TRANSPARENCY : Transparency (from O=opaque to 1=invisible)

SetV al Sprite3d(<parameter>,<value>) edits a value associated to a 3D Sprite

<parameter> is identical to GetValSprite3d with more:

JOINTMIN, JOINTMAX : minimum and maximum value of the joint with
the parent
JOINTMINZ2, JOINTMAX2 : minimum and maximum value of the second
joint

Behavior name syntax
The name for reference to Behaviors must comply with the following
syntax:

- a name without path: it will search for the first Behavior whose
name starts with this text in all the current World 3D Behaviors

- .\<name> : a named Behavior brother of the current behavior;

- <sprite name>\<Behavior name> : a named Behavior child of a 3D
Sprite. The 3D Sprite hame must meet the criteria defined in the
“3D Sprite name syntax” chapter

Access functions to values associated to Behavior

GetBehavior(<parameter>) returns a value associated to a Behavior

<parameter> can be a Behavior name or a Behavior name and value
type.

The syntax is:

[<Behavior name>].<value type>

Virtual Universe

Or
[<Behavior name>]
If the value type is omitted, the current value is referenced.

The possible value type is “internalvalue” to access the current internal
value.

Examples:

[MY BEHAVIOR]: current value of the Behavior names “MY
BEHAVIOR".

[MY DOG].internalvalue : current internal value of the Behavior named
“MY DOG".

[robot1**\level2\position] : current value of the Behavior named
“position” child of the 3D Sprite named “level2” descendant of the 3D
Sprite named “robot1”.

[..\..\..\request].internalvalue : current internal value of the grandparent of
the parent of the Behavior.

SetBehavior(<parameter>,<value>) writes the value of a Behavior
<parameter > is identical to GetBehavior.

Access functions to values associated to the Universe

GetUniverse(<parameter>) returns a value associated to a Universe
<parameter> may be:

- RUNNINGDURING : returns the duration in ms since the last
switch to RUN of the simulation

- MOUSEBUTTONS : returns the state of the mouse buttons : bit O
for the left button, bit 1 for the right button and bit 2 for the middle
button.

- MOUSEX, MOUSEY : returns the position of the mouse cursor
related to the upper left corner of the rendering window.

Virtual Universe

40

SetUniverse(<parameter>,<value>) writes a value associated to the
Universe
<parameter> may be

PLEASEQUIT : forces termination of Virtual Universe
Other functions

GetFirstSorite3D(<name>) returns the first number of a 3D Sporite

The name must comply with the 3D Sprite hame syntax. The numeric
value returned may be directly passed as a parameter to the access
functions to the values associated to 3D Sprites in the form of “#number”.
If the returned value is less than 0, no 3D Sprite was found. See the
“VYacuum Robot” example for an illustration.

GetNextSprite3D (<number>,<name>) returns the number of the next 3D Sprite.
<number> is the value returned by GetFirstSPrite3d.

If the returned value is less than 0, no 3D Sprite was found.

Rand() : returns arandom value between 0 and 1
See the “Vacuum Robot” example.

Computel K (<ndof>,<x>,<y>,<z> <a>,<c>,<tx> <ty> <tz>,<bl>,<b2>,<b3
> <b4>,<b5,<b6>) calculates the inverse kinematic resolution of arobot

The associated Behavior must be the child of 3D Sprite composing the
last element of the robot.

See the “ABB Robot” example.

<ndof> : number of degrees of freedom (must be 6) ;
<X,Y,Zz> : position to reach ;

<a,b,c>: desired angle for the last element;
<tx,ty,tz>: tool movement ;

<b1> to <b6> : name of the 6 Behaviors which will receive the values for
each of the 6 axes.

The return value is:

Virtual Universe

0 : no error, the values were calculated:;
-7 : the position cannot be reached;

Another value < than O : error.

Virtual Universe

42

Object library

It is possible to import and export “complex” objects composed of 3D
Sprites, Lights and Behaviors.

Importing of complex objects is implemented by clicking on a World or on
a 3D Sprite with the right button of the mouse and selecting “Import”.
Examples of objects are located in the “library” sub-directory of the
Virtual Universe installation directory.

Exporting is implemented by clicking on a 3D Sprite with the right button
of the mouse and selecting “Export”. All of the “Children” elements are
exported.

External links

The external links are used to control simulations created in Virtual
Universe by an external software (for example AUTOMGEN).

The connection type is set in the Universe properties.

Exchanges are enabled when Virtual Universe is in RUN mode and the
external software is capable of performing these exchanges.

The connection state is displayed in the Universe properties.
A link is established between the external software and a Behavior.

Based on the selected external software, a specific variable name can be
documented in each Behavior.

Current value and internal current value

Each Behavior possesses two states : a current state and an internal
current state. These two states are used differently and inversely based
on the information direction: external software towards Virtual Universe
or Virtual Universe towards the external software.

Virtual Universe

43

Reading a Virtual Universe value from the external software
This action can be described as “reading an input” from the external
software viewpoint.

The data path is as follows:

The conversion type may be simple recopying of the value or an
inversion (for complemented Boolean variables).

In complement a “write mode to external software” can be specified.
Three modes are available:

-« Normal »: the value is written with each exchange;

- “Only when changed”: the value is only written to the external
software if it has changed (writing to certain external software may
use resources, the aim of this option is to mitigate the impact of
writing in terms of resources);

- « Safe »: the value is written with each change; Each writing is
checked (reading of the value after writing). This mode guarantees
that a fugitive state change (normally a true view sensor during a
very short duration — less than the data exchange time between the
Virtual Universe and external software — will be “seen” by the
external software. This is used in the “Conveyor” example.

Virtual Universe

44

Writing an external software value to Virtual Universe

This action can be described as “writing an output” from the external
software viewpoint.

The data path is as follows:

The conversion type may be simple recopying of the value or an
inversion (for complemented Boolean variables).

Virtual Universe

45

Access to the external links of an object group

It is possible to easily access all of the inputs and outputs associated to
an object group by clicking with the right button of the mouse on the
parent (click on the World to have all of the links of objects found in the
World) and selecting “External links”. Examples:

Externallinks |
— Inpuks
B Aoorsupport' cylinder'rod' cylinder'rod' sensor max -
AUTOMGEM or AUTOSIM wariable byvpe Inpuk %l
AUTOMGEN oF AIJTOSIM variable number 1
Drata conversion Copy (N0 conversion)
B Aoorsupport’cylinder' rod' cylinder',rodh sensor min
BUTOMGEMN or AUTOSIM wariable byvpe Inpuk %l
AUTOMGEN or AJTOSIM wariable number 0
Data conversion Copy (N0 conversion) oo
B fAoor'supportcylindertrod' sensor max
AUTOMGEMN or AIJTOSIM variable tvpe Input %l

AUTOMGEN or AUTOSIM wariable number 3

P ' . 1

—ogkpuks

B fAoor'support’ cylinder'rod' cylinder' rod' venturi® yenturi', yacuum =
AUTOMGEMN or AIJTOSIM variable tvpe Cuakput %0
AUTOMGEN or ALUTOSIM wariable number 0
Draka conversion Copy (No conversion)

B Aoorsupport’.cylinder'rod' cylinder',rod*force
AUTOMGEM or AUTOSIM wariable byvpe Cukpuk %
AUTOMGEN oF AIJTOSIM variable number 1
Drata conversion Copy (N0 conversion)

B Aoorsupport’.cylinder'rod'force
BUTOMGEMN or AUTOSIM wariable byvpe Cukpuk %0 =

BUTOMGEM or AUTOSIM wariable number 2

o e - 1

Close

A

The typical application of this is to edit the attribution of inputs and
outputs of an object after importing or duplication. The variables
associated to inputs and outputs depend on the type of driver (type of
external software) selected in the Universe properties.

Virtual Universe 46

Examples

Conveyor
The conveyor project is located in the “samples\conveyor” sub-directory

of the Virtual Universe installation directory. It is accompanied by an
AGN project for the AUTOMGEN or AUTOSIM software and an .XEF

project for the Unity Pro software.

% ¥irtual Universe

This example illustrates the following functionalities in particular:

- Shadingmanagement : here ‘lightened” (with fewer faces) 3D
Sprites have been used to render the shading in order not to slow

down the rendering too much.

Virtual Universe 47

o) foor
W Corweyor t
W shadows
W physic t
+ WO physic 2
= WO cuides

A Scale

L TRIE

B Position and size (current values)

IEEHEHEX

Material
Arnbient colar

'ﬂ Phipsic 1 Ernissive color
; Diffuse color
ﬁ Physic 2 Specular calor

» Shininess
Material type

= ﬂ Sensor 2
-4}=! ﬂ Light Calurin

Transparency
Motk visible

Has a shadow
Receive shadows

ﬂ Misc physic and shadow Only Frame

- Physical management :
“physical” management.
n Floor
= n Corseeseatr 1

ﬂ shadows
ﬂ physic 1

-=';= ﬂ pheysic 2
é-_ n Guides

Virtual Universe

ﬂ

ﬂ Physic 2

[RECFEN TR

0.186861; 0.815377; -0.6

oo
oo

B 11z t12; 112
[] zz9; 229; 229
102,400001525573
SOLID

0

True

True

False

False

Falas

the same principle has been used for

= "
Bl Nawigation
Mok selectable
B Physic
Use physic
Use graviky
User can apply force
Body tvpe
Maszs
[Moment of inertia
Auto adjust center of mass
Skatic Frickion coefficient
Kinetic friction coefficient
Elasticity coefficient
Skatic softness coefficient

False

True

False

False

Bio

10

150; 150; 150
False

0

o
]
i

48

- Applications of a Behavior to an object group: the torque applied to
the rollers of each conveyor is generated by a sole Behavior with
the “apply to siblings” attribute.

&P ohvsic 2 =] Mame Comveyor 1 Rotates rollsrs sens 1 a |
pry g T i
— ﬁ Réller 1 Type of the behavior Apply tarque to the 30 sprite
Force 4000; 0; 0

Conveyor 1 Rotates rollers sens 1

Conveyar 1 Rotates rollers sens 2 Apply o siblings True
: -
Conveyor 1 Rollers brake &

ﬂ Roller 2 sl
ﬂ Roller 3 =]

AUTOMGEM or AUTOSIM variable b Qubput 30

TELELY

T

- Forward run, backward run and brake simulation for the conveyors.

—

[=] S roler 1

Conwveyor 1 Rotates rollers sens 1

{C-E; Conveyor 1 Rotates rollers sens 2
i

Conwveyar 1 Rollers brake

S

Virtual Universe

- Simulation of a light column.

¥irtual Universe Setup -C:' automgen ¥ 7iris3d", virtual univers'iris3d'\ bin' samples'.cony

Shadow i’ W

Marne switch onfoff red light

1 Type, ett
ab 0 Sensor 2 B Trpe,

Twpe of the behavior Set the light intensity
= 0 Light Column i

= ”red

= red £

b Ratal 0:0;0
@ switch onfoff red light y -

=§_}- 0 orange
A Link

4| WP areen AUTOMEEN or AUTOSIM variable b Oubput %0
AUTOMGEN ar AUTOSIM wariable n 3

Apply to siblings False

B Micr nbvicie and chadeu

- Management of the sensors has been implemented with “Collision
test” Behaviors. Management of the “stealth” of information from
the sensors has been treated with a “safe” write mode so that the
external software can “see” the information in a certain manner.

0 Shadow AT Name
Mame Bokbam sensar
— ﬂ Sensar 2 8 Type, et
Type of the behaviar Test collision with other 30 sprit
sensar light 1 = Fr 0;0; 0
- ;
semsar light 2
P 000
o;0;0
L H Link
4 WP Light Column AUTOMGEN ar AUTOSIM variable b Input %1

L ! AUTOMGEM or AUTOSIM variable n 0
“ Misc physic and shadow e =

ﬂ Misc physic and shadowl
ﬂ Misc physic and shadowz

“ Sensof suppark

Initial value o

“ Sensar suppark 2 Currant value i}
Data canversion Boolean (false if 0,true otherwis
+ ﬂ Sensot 3 Internal current value 1]
Mame(s) of other sprite b
! Q Conveyar Switch = Write mode Safe

Virtual Universe

- Return of the boxes to the start position is managed by the pair of

Behaviors “Collision test” and “Writing of position”.

[

= n Universe
= 9 My world

Iy light

o
= My camera

= 0 b 1

retu

retu

(SHOHHES

0 Flaar
= 0 Conveyor 1

” Misc physic and shadow 1
o Misc physic and shadowz
o Sensor support
o Sensor suppart 2
s o Sensor 3

” Conveyar Swikch

” b (layout)

” Arrival

| ” Departure 1

WY iemt
W itemz
W item3
W items
W items

departure 1 collision 2

rn From departure 1

rr from departure 2

collision test For sound bow 1

collision sound

WD shadows
0 phwysic 1
o o phwsic 2

= WP cud

s

o Physic 1
0 Physic 2

Virtual Universe

| »

Bt = BT
Mame
B Type, ete

B Link

AUTOMEGEN or AUTOSIM variable byvpe

Type af the behaviar

departure 1 callision 1

Test callision with ather 30 5p

;0

0; ;0

MONE

AUTOMGEN or ALUTOSIM variable number]

Initial value
Current value
Drata conversion

‘Write mode

E} Name
Marme

£ Type, et
Type of the behavior

)

Apply ko siblings
Position
Raotation

B Link
AUTOMEEM or AUTOSIM variable type
AUTOMGEM or AUTOSIM variable number

Initial wahe

Current walue

Drata conversian
Internal current value

Get value from this behavior

Internal current value
Mame(s) of other sprite

i)

o

Copy {no conversion)
1]

box 1

Marmal

Get value from this behavior

return from departure 1

Set the 30 sprite position and ratation
;O

False
0; 7; -84
0;0;0

MONE

The type of the variable the

a
o
Copy {no conversion)
o

departure 1 collision 1

51

- The names and states of the variables are displayed in the
rendering window (choice of the user selected in the Universe
properties).

B Connectio
Drriver IRAT AUTOMGEN
= 9 My world y

My light Server name or IP address localhost
Part number S000

|v

i
-t My camera

= ﬂboxl

B} Options

{(E):; return From departure 1 Automatic run True
Show variables and states User choice
{(E):E return From departure 2 Orly Frame il
| Debugphysic False
callision test for sound box 1

- Modulation of the sound speed based on the roller rotation speed.
Calculation implemented in a script.

ad 0 physic 2 2] E rame
Name sound comveyor 1
st oRU”Brl B Type, et
Type of the behavior Play sound (loop)
@ Conveyor 1 Ratates rollers sens 1 0; 00
@ Conveyor 1 Rotates rollers sens 2
Apply to siblings False
@ Convevor 1 Rollers brake 0;
Lot atior 0;)
W rollerz -
ﬁ Roller 3
) Link
O coler 4 AUTOMGEN or AUTOSIM varisble type NONE
AUTOMGEN or AUTOSIM variable number o
” Roller 5 ; T
o rolere
o Roller 7
0 Roller &
Initial valie 0
ﬁ Roller 9 Current value 0
Data conwersion Copy (no conversion)
= W roler 10 Internal current value o

sound conveyor 1

Get value from this behavior
sound conveyor 1 brake Y

External link False
More options

oRnHarll = e

caleulate sound speed

Sound Filename electric motar.mp3

” Roller 12 Sound options Modulate speed (1 is normal speed)
Minimal distarce 5

e o = ¢

Virtual Universe

=| W physic 2 —

Mame calculate sound speed
= o Roller 1 ype, e
Type of the behavior Execute seript
{é’} Conweyor 1 Robates rollers sens 1
@ Corveyar 1 Rotates rollers sens 2 3
Apply to siblings False
@ Canveyar 1 Rollers bralke D,
D roller 2 =)
P roler 3 ;
Bl Link
W Roller 4 AUTOMGEN or AUTOSIM variable type HONE
AUTOMGEM or AUTOSIM wariable number o
D rolers :
0 Roller &
oD roler 7
P Roler s .
Initial value 0
P roler s Current value]
Data conversion Copy (no conversion)
=] S roller 10 Internal current value i
{é’} sound conweyar 1 b
Get value from this behavior 1
sound conveyar 1 brake b =

External link False
tore options

W roler 11 e
P roler 12

o Roller 13 El Scrip
rem calculate sound speed From roller speed
& roler 14 speed=Get¥alSarite3d("ROTSPEEDX");
if speed<0 then speed=-speed
if speed<0.01 then speed=0
0 Roller 15 Seript SetBehavior("sound conveyor 1internalvalue”,speed/10);

Operation
The boxes are two different sizes, the aim is to empty them towards
two different destinations based on their size. Two sensors (a lower
sensor and an upper sensor) are used to identify the box size. Only
lower sensor = small box, lower and upper sensor = large box.

Virtual Universe

List of AUTOMGEN / AUTOSIM variable references

Symbol Variable | Comments

before switch low sensor %Ii0 lower sensor before the switch
conveyor

before switch high sensor %il upper sensor before the switch
conveyor

departure sensor backward | %i2 departure sensor behind
switch conveyor

departure sensor forward %i3 departure sensor before switch
conveyor

arrival sensor %i4 conveyor arrival sensor

middle conveyor forward %q0 | middle conveyor motor forward

middle conveyor backward %@l | middle conveyor motor
backward

middle conveyor brake %¢@2 | middle conveyor brake

middle conveyor red light %3 | middle conveyor light column
red light

middle conveyor orange light | %q4 | middle conveyor light column
orange light

middle conveyor green light | %q5 | middle conveyor light column
green light

switch conveyor forward %q@6 | switch conveyor motor forward

switch conveyor backward %q7 | switch conveyor motor
backward

switch conveyor brake %08 | switch conveyor brake

arrival conveyor forward %09 | arrival conveyor motor forward

arrival conveyor backward %q10 | arrival conveyor motor
backward

arrival conveyor brake %q11 | conveyor motor brake

arrival conveyor orange light | %ql2 | arrival conveyor light column
orange light

arrival conveyor red light %q13 | arrival conveyor light column
red light

arrival conveyor green light | %ql4 | arrival conveyor light column

green light

Input

Output

Virtual Universe

54

List of UNITY PRO variable references

-4 before_switch_low_sensor EBOOL %0.1.0

- before_switch_high_sensor EBOOL 011

-4 deparure_sensor_backward EBOOL %012

-4 departure_sensor_forward EBCOL w013

-4 amival_sensor EBOOL %0.1.4

- middle_conveyor_forward EBOOL w020
- middle_conveyor_backward EBOOL 021

-4 middle_conveyor_brake EBOOL w0022
-4 middle_conveyor_red_light EBOOL 023
- 4% middle_conveyor_orange_light EBOOL *a0.24
- middle_conveyor_green_light EBOOL w025
- switch_conveyor_forward EBOOL #%a0.26
-4 switch_conveyor_backward EBOOL 027
-0 switch_conveyor_brake EBOOL %a0.2.8
- 4% amival_conveyor_forward EBOOL %2029
- amival_conveyor_backward EBOOL 0210
-5 amival_conveyor_brake EBOOL 0211
-4 amival_conveyor_red_light EBOOL 0212
-4 amival_conveyor_orange_light EBOOL 0213
- 4% amival_conveyor_green_light EBOOL w0214

Virtual Universe

55

Robot and bottles
This project is located in the “samples\robot and bottles” sub-directory of

the Virtual Universe installation directory. It is accompanied by an .AGN
file.

W Yirtual Universe

This project illustrates the following functionalities in particular:

- Modification of the scale and position for spring simulation;

Virtual Universe

56

Hams process spring size and position

El Type, etc.
Type of the behavior Execute script
bt #1 Force 000
Attraction [
bt #2 Attraction distance
Apply to siblings
mers Fosition
Ratation
e Color
i pasition
B base Max position [}
Bl Link
H o levell AUTOMGEN or AUTOSIM variable bype MONE
B - AUTOMGEN or AUTOSIM varisble number]
N M340 variable name
@ process spring size and position P variable
OPC varisble path
e Advantech Type NOKE
Advantech card number [
Het dvantech channel number [
Tnitial value 1
Hez Current valus 1
Data conversian Copy (no conversion)
Hed Internal current value 1
Hame{s) of other sprite
Het Write mode: Mormal
Get valus From this behavior
HeS Select information b read from the 30 sprite % position
) External link False
;:5 reset simulation e
i:j reset i bettle is moved Far Sl
Sound filename
Sound options Mo option
Piinima| distance]
Bl Script

levellpos=getvalsprite3d(’"[. levell | RELPOSZ")
sebvalsprite3d("SCALEZ ", ((lavell pos+600)*0.001846)+0. 13
setvalsprite3d("POSZ" ({level 1 pos-+600)*0.66)-320)

Seript

- Setting of joints;

= - Universe
=-I 9 Wiorld

| v

.
DEEEEEEE O

Name

Marme levell
Dir awing

Paosition and size

Light #1 Position and size {current values)
Material

Material (current values)
Mawvigation

Light #2

.

[
= Camera

Physic joint with parent

=' 0 tahble Jaint Slider
s Pivaot joint position 0;0; 0
e » base Lime: of action 0;0;1

Jaink i limit o]

Joink ma limit 0,01

”sri Joink power L
— pring Break joint; force 0

@ bl G S e B Physic joint with an other 3D sprite
Marme of the 30 sprite

» batte Juink Mare

EHH

& Pivot joint position 0;0; 0

» battel Line of action 0;0;0
Jairik mir lirnit 0
» battlzz Jairt; ma limit]
Joink power 0
WP bottes Ereak joint Force 0

Virtual Universe

Simulation of robot motors by modification of joint limits. Controlling
by numeric variables (a variable associated to each axis) managed

by a script for each motor.

.
S Camers
=] W) table
=] W base
= P evelt
Wb rollert
W rollerz
Wl roller
&+ evelz

@ set rollers rotation
motor level

oy

{C:)} requested paosition
{C:):s current position
{C:):a sensot levell
{C:):ﬂ calculate sound
e

sound

@ process spring size and position

W bottle

W) bottlet
W) bottlez
) bottles
WO bottled

=| M bottles
ke

Gripping: nothing in particular
sufficient.

Virtual Universe

Mame
& Type, e
Type of the behavior
Apply to siblings
=
& Link

BUTOMGEN ar AUTOSIM variable type
AUTOMGEN ar AUTOSIM variable rumber

Initial value

Current value

Data conversion

Internal current value

Get value from this behavior
External link

Maore optio

& Seund

Script

to do, closing

mokor levell

Execute scripk

False

MONE

1
1
Copy (no canwersion)
1

[Read the current value of the behavior For whi
FaEs

min=-&00
max=80
minspeed=0.01
maxspeed=0,3
accelen=20
daccelen=100
accel=0.001
spead=minspeed
_len=max-min
Flar—1nnnn

— 11

of the clamp is

58

- Simulation reset after movement of the last bottle.

t’g’j set rollers ratation —
Name reset if bottle is moved far

@ matar levell B Type, et

Type of the behavior Execute script
ECCEE requested position ; 0
@ current position iU ion distance

&pply to siblings False
(:C}:! sensar levell BY Positior @ 0

B Rota [

@ caleulate sound r =
CC}:! sound .

=

spring
{C}} process spring size and position
& botte i getvalsprite3d{"POSZ" =500 then
o setbehavior("resst simulation.internalvalue”, 1)
endit
W bottler
Script
W bottlez
W bottles
W bottled
|=| e bottles
@ reset simulation
Sound
reset if bottle is moved Far Parameters regarding sound playing. This is 3D sound depending of the position of the parent
WO rollers
o Hame: reset simulation
. Type, etc
o n level2 B Type
Type of the behavior Reset (STOP then RUN)
@ set rollers rotation B Force 0, 0; €
53 ot e
Apply to siblings False
@ requested position i y; 0;
B
@ sensor levell "
E Link
calculats sound ALTOMGEN or AUTOSIM variable type NONE
@ AUTOMEEN or AUTOSIM variable number 1]
sound o et
= ” spring
@ process spring size and position s
W bottle fvantech char
Initial walue o
o tottiet Current value 0
Daka conversion Copy (ho conversion)

W bottlez Internal current value

W botties s
et walus From this behavior
WO bottled sy

External link False
=| W botties 3

@

B Sound
@ reset if bottle is moved Far

Virtual Universe

Operation
Two numeric values are used for each of the axes. One gives the current
position, the other is used to set the position to reach. If the current
position is near the requested position, then the movement has been
performed.

List of AUTOMGEN / AUTOSIM variable references

Symbol Variable | Comments

request level 1 %mw200 | Position requested for axis 1

position level 1 %mw201 | Current position for axis 1

request level 5 %mw208 | Position requested for axis 5

position level 5 %mw209 | Current position for axis 5

request finger 1 | %omw210 | Position requested for clamp finger 1

position finger 1 | %omw211 | Current position for clamp finger 1

request finger 2 | %omw212 | Position requested for clamp finger 2

position finger 2 | %omw213 | Current position for clamp finger 2

Input

Output

Virtual Universe

NXT robot

This project is located in the “samples\nxt” sub-directory of the Virtual
Universe installation directory. It is accompanied by an .AGN file.

Virtual Universe

61

This project illustrates the following functionalities in particular:

- Simulation of a mobile robot;

= 9 world

Light #1
Light #2

Camera
]

- ol
= 0 support wheel3
- e wheel3

. @ crash sound
@ crash test

= W supportt
|=| W supportz
=| W support3
=W i sensor
&= W sensor

@ crash sound
@ crash test

crash sound

crash test

{C}} crash sound
@ crash test

== ﬂ rmatorl

£33

=
=
o
o

motor
clockwise
anticlockiise
power
compute motar
birake

sound

compuke sound

SHSHSHHTHHHT

Virtual Universe

-

8 Mar
Mame
B Drawing
3D file
Texture file
Texkure file
Texture file
Tesxture file
& Position and size
[Coordinates
B Ratations
[Rotation axis position
Scale
& Position and size {

urrent values)

B Material
Ambient color
Emissive: color
Diffuse color
Specular color
Transparency
Mot visible
Has a shadow
Receive shadows
Only Frame
Owerwite material #1
Owerwrite material #2
Owerwrite marerial #3
Owerwrite material #4
Owerwrite material #5
Owerwrite material #6
Owerwrite material #7
Owerwrite material #8
Owerpirite material #3
Owerwrite material #10
Owerprite material #11
Owerwrite material #12
Owerwrite material #13
Owerwrite material #14
COwerwrite material #15
COwerwrite material #16
B Material (current values)

cpu.305

o;-T;0
0;0;0
0;0;0
111

[217; 217; 215
oo

[217; 217; 218
Il 54 54; 54

i

False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False

62

Simulation of 2 variable speed motors modulation of the speed and
brake controlled by 2 Boolean variables and a numeric variable.

=W SR
- o SUpport3
=| WO ir sersor
gk 0 sensor
@ crash sound
{C:)} crash test

crash sound
crash test

@ crash sound

crash kest

LELE

= 0 motorl

il
=
=g
o
g

rnakar

clockwise

anticlockwise

sound

(S

compute sound

@ crash sound
@ crash test

k| 0 motor2

@ crash sound

Virtual Universe

TMarne
EH Type, et
Type aof the behavior

apply ko siblings

P

AUTOMGEN ar AUTOSIM variable tyvpe
AUTOMGEN or AUTOSIM variable number

Initial walue

Current value

Data conwersion
Internal current value

Get value from this behavior

External link.

More options

Scripk

Compute mator

Execute scripk

NONE

|
1
Copy (no conwersian)
1

False

REM 2 digital inputs for 25 way of the motor:
inl=getbehavior("[. WCLOCKWISET")
in2=getbehavior("[. JANTICLOCKWISE]"
REM power from Ota 127
power=getbehavior('[. . \POWER]")

if power =127 then

power=127

endf

brake=1

DEM hwaba if 7 dimibale i ke ses bros

63

Analog proximity sensor simulated by a penetration test.

|= 9 World

Light #1
Light #2
v

55« Camera
= .-

4| W support wiheels
=| WP supportt

=| W supportz

=] supperts
=| W i sensor
=) P s

@ cormpute [R
@ IROUT
@ crash test

crash sound

(S35

crash test

@ crash sound

% [

Virtual Universe

Mame
8 Type, etc

Type of the behavior
=]

B Link
AUTOMGEN or AUTOSIM wariable bype
AUTOMGEN or AUTOSIM variable number

Initial value

Current value

Data conversion

Internal current value
Mamels) of ather sprite
Write mode

Get value from this behavior
External link.

Maore oplions

=

B Script

IR

Get penetration with other 30 sprites

MOMNE

o
(1]
Copy (no conversion)
1]

Marrnal

False

64

A8 Name

Marne compute IR
B Type, etc,
Type of the behaviar Execute script
0; ;0
Abtract
Apply to siblings False:
0 0; 0
000
|
B Link
AUTOMGEN ar AUTCSIM vatiable type MOMNE

AUTOMGEN ar AUTOSIM varisble number o

M3 arne

“ supporkd =
“ ir sensor i

Ay il
» SEMSOF F e o 0
g Initial value 1
ki @ R Current value 1
| Diata conversion Copy (no conversian)
g @ compute IR Internal current walue 1
: Mame ite
= @ IROUT y [rv
Get value from this behavior
crash test P -~
i elect ir Vo e (
: External link
- crash sound >
More options

B Sound

- @ crash test
. @ crash sound
: @ crash test

@ crash sound
i
. crash test
ir=getbehavior("[. \IR]")
if ir =255 then
| “ maktori ir=255
else
|- P motor2 Fir=-1 then
ir=255
else
& crash sound =itz
T s |
crash test — Gepipl | endif
: Basic ¢ sethehavior("[. \IROUT]",ir)
& foor =
Mame supportl
3 Drawing
3D file supportl, 305
Light #1 Tesxbure file
v Texkure file
Light #2 Texture file
Texture file
o] Camera @ Paosition and size
3 H Position and size (current values)
=] cpu [Material

@ Material (current values)
@ Navigation

B
B Physic joint with parent
Joink Fix
[Pivol joink position 0;0; 0
[Line of action 0;0;0
Jaint mir limit o
Jaint max limit o
Jainlk power 0
Break joint force 2400

B Physic joint with an other 3D sprite

Virtual Universe

Operation

The two wheels are controlled by motors whose power is controlled
by numeric variables. Two boolean variables are used to control the
motor in each direction.

List of AUTOMGEN / AUTOSIM variable references

Symbol Variable | Comments
motor#1 power %mw200 | Motor 1 power
motor#2 power %mw201 | Motor 2 power
sensor %mw203 | Proximity sensor
motor#1 direction 1 | %90 Motor 1 Direction 1
motor#1 direction 2 | %q1 Motor 1 Direction 2
motor#2 direction 1 | %02 Motor 2 Direction 1
motor#2 direction 2 | %03 Motor 2 Direction 2

Input

Output

Virtual Universe

6 axis ABB Robot

This project is located in the “samples\abb robot” sub-directory of the
Virtual Universe installation directory. It is accompanied by an .AGN file.

% ¥irtual Universe

This project illustrates the following functionalities in particular:

- Simulation of a 6 axis robot.

Virtual Universe

&l & Name

Mame
B Drawing

30 file:

Texture file

Texture File

Tewxture file

Texture File
A Position and size
E Coordinates
& Ratations
[H Ratation axis position
® Scale
B Position and size {(current values)
Coordinates
& Rotations
8 Rotation acds position
#H Scale
 Relative translation
£ Relative rotation
Center coordinates
{8 Absolute ratation
A Material

lewvels

lewell0, 305

0;0;0
0; 0;0
0; 50
1 1;1

-6.67572e-006; 0; -5.94137e-00:
0; -0; 0

0, 0;0

11

-6.67572e-007; 0; -5.94137e-D01
0;-0;0

9.85999; 16.21; 0.00994059
0;-0; 0

67

- Simulation of a motor by PID.

n Universe
=] 9 Wwarld

B Name
Marme
Bl Type, etc
Type of the behavior

Light
-
Light #2
i Apply to siblings
_“é‘-—. Cameta ki
=] ” robot1
= ” lewvell T N
B Link
+ D evel2 BUTOMSEN or AUTOSIM variable bype
2 AUTOMEGEN or AUTOSIM variable number
0 miscl i
i
s miscz
rmokar
Initial value
requesk Current value

[s nbe
+ » floar

Virtual Universe

Daka corversion
position Inkernal current value

_U
=

et value from this behavior

in
=]}
E
a

Excternal link.
More options
B Sound

soundspeed

{SHSHOHTHIHHE?

PID

Execute script

MOME
0

1
1
Copy (no conversion)
1

False

68

Script editor

Scripk

MINCUT=-1000
MaxoUT=1000
kP=z0

kKD=0.1

KI=0

err=0

olderr=0

inkegralerr=0
curtime=getuniversed"runningduring")

mvloop:
dr=getuniverse!"runningduring1-curkinme

if dr=0 then dt=1

curtime=curtime-+dt
request=getbehavior("[..\request]"}

rern Sethalsprice3d joinkmin”, requesk)

rem SetvalSprite3d!"jointmin”, request+0.0001)

current=getbehaviaor"[. \position]. inkernalvalue")
olderr=err

err=request-current

P=kP*err

inteqralerr=integralerr+err*dt
I=kI*inteqralerr

D=kD*err-olederr)idt

ouk=P+I+D

if auk =MARCUT then ouk=MaxX0UT

if ouk<MIMCOUT then out=MIMNQUT
sethehavior"[, \mokor]inkernakalug”, out)

rem prink "P=";P;" I=";1;" D=",D;" reguest=";request;"position=";current;" dt=";dt

goka myloop

Virtual Universe

i

curkime=";curtime

69

- Inverse kinematic calculation of the robot.

. 0 lewels :I El Name

Marme IK
] Type, etc
=h| ” clampl 8
. Twpe of the behavior Execute script

+ ” clampz i U

) ” clamp f tion distal
Apply to siblings False

miakor e Ficr o

Lot at 7 0; €
brake ; [
request ..\ ;

= B Link

prsitin AUTOMGEN or AUTOSIM variable type Ward M
i AUTOMGEN or AUTOSIM variable number 200

k=]
o
#

Initial value i

pos3 Current value 1

Data conversion Copy {no conversion)
pos4 Internal current value 1
poss

Get value from this behavior
posé - ep—

External link. True
£¥ye More aptions

B Sound

reqy

R HRNCHOHIRIHCHIHINES

T
H

Script editor

Scripk

requx=getbehavior"[. .\reqx]"y 100
reqe=getbehavior"[..\reqy]) 100
reqy=getbehavior"[. .\reqz]")f 100
reqal=-getbehavior("[..\reqal]")
reqas=-gethehavior"[..\reqaz]"
reqaz=-getbehavior"[..\reqa3]"
ret=getbehavior("[. \ret]"

if ret<1 then

rek=computelk(f,reqx, reqy,reqz,reqal ,reqa, reqas,n,0,0,". \pos1®,". Apos2",", ipos3", ", \pos4™, ", \posE", ", \posa™)
if rek=0 then

setbehavior"T. \ret]", 1)

pos 1=getbehavior("[. .\pos11"
posZ=getbehavior"[. .\pos2]"
pos3=getbehavior("[, \pos3]")
posd=aethehavior("[. \pos4]")
posS=qetbehavior"[. .\poss]"
pose=getbehavior"[. .\posa]"
setbehavior(". .4 0008 L request]”, posy
setbehavior(". .4 000 regquest], pos2)
setbehavior("l. 1. 000 Aregquest], pos3)
sethehavior("[..}. .. \request]”,pos4)
Arequest]”, poss)
reguest]”, posa)

ne
ne
sethehavior("T. ..
setbehavior("T. .\
else
setbehavior("[. iret]", ret)

endif

sethehavior("[. .\ IK].inkernalvalue”, 0}
endif

Virtual Universe

- Simulation of a conveyor;

n Universe
= 9 “WWorld

Light

Light #2

=4 Camera
—

L] 0 robat1
L] 0 tube
= 0 floar

= ﬂ ConYeyor
= 0 rmotar

{C_):;! motar

= 0 makor
ﬂ end box
b ﬂ end box

Operation

Six numeric variables are used to select the destination and orientation
of the robot clamp. The precision of the destination position is also given
by a numeric variable. The higher the requested precision, the longer the
time to end the movement, inversely, less precision makes it possible to
chain the movements faster to the detriment of precision. A control
numeric variable is used to run the movement, a response numeric
variable is used to know if the movement has been performed. The

Marne
B Type, etc
Type of the behavior
Force

Apply ko sblings

AUTOMGEN or AUTOSIM variable bype
AUTOMGEN ar AUTOSIM varisble number

Initial walue

Current value

Diata conversion
Inkernal current value
Mamels) of ather sprite

Get value from this behavior

External link

mokor

Apply local Force to the collide 30 sprites
0; 0; 0.001

False
[ias]

MOME

1

1

Copy {no corwersion)
1

bottle

False

coordinate system is the one really used by the real ABB robot.

Virtual Universe

71

List of AUTOMGEN / AUTOSIM variable references

Symbol Variable | Comments
xrobotl %mf200 | Destination X coordinates
yrobotl %mf201 | Destination Y coordinates
zrobotl %mf202 | Destination Z coordinates
arobotl %mf203 | Destination A angle (in degrees)
brobotl %mf204 | Destination B angle (in degrees)
crobotl %mf205 | Destination C angle (in degrees)
deltarobotl %mf206 | Requested precision
cmdrobotl %mw200 | Command: going from O to 1 runs
the movement
statrobotl %mw201 | Result: 1=movement performed;
<O=error (-7=position impossible to
reach)
close clamp %q0 Closes the clamp
Input
Output

Virtual Universe

72

Vacuum robot

This project is located in the “samples\vacuum robot” sub-directory of the
Virtual Universe installation directory. It is accompanied by an .AGN file.

% ¥Yirtual Universe

Virtual Universe

73

This project illustrates the following functionalities in particular:

- Random positioning of objects;

o dustasz b

Mame
W dustass E Type, et

Type of the behavior
WP dustase
W dustass g :

Apply to siblings
P dus3se i

R
o dusi3a7
P duszes
B Link
O dustazs AUTOMGEN or AUTOSIM variable type
0 dUst390 AUTOMGEM or AUTOSIM variable nurber
s

o dusan
0w dustasz
WP dustass Adva

Initial walue
WP dus3s4 Current: value

Drata conversion
” dust395 Internal current value
P dus3ze

Get value from this behavior
W dustasy ==

Externial link
W dustass S

fore options
) dustaes i
WP dustano
W dustant B Script
@ dispatch dust J
&} tabls and chairs -|
Scripk

Virtual Universe

dispatch dust

Exgcute script
0; 0;

False

MONE

i
1
Copy (no conversion)
1

False

- M N TV

nurm=getfirstsprice3d"dusk™

while nurn==0

w=rand{*520-260

z=tand{F*a30-600
param="[#"+asstring{num+"].POSx"
sebvalsprite3diparan,)
paranm="[#"+asstring{nurm)+"].POSZ"
sebvalsprice3diparam, 2)
nurn=getnextsprite3dinum, "dust")
wend

setbehavior"[, \dispatch dust].inkernalvalue", 0

74

- Simulation of a vacuum.

jn Universe
- Q-

Lumiére
Lurnigre #2
-

i Camér
=| Wb robot
4| S wheelt
4| W wheelz
W wheels
4| S robot
[W ir sensar

I
5 sars

{:C}} sound2
GE

compute sound
-#- » Floor
-#- » group For dust

Operation

e
Marne

B Type, etc.
Type of the behaviar

Apply to siblings
Position
H Rotation

B Link
AUTOMGEN or AUTOSIM variable bype
AUTOMGEN or ALTOSIM variable number

Initial value

Current walue

Data conversion
Internal current value
Mame(s) of other sprite

Get value from this behavior

—Egamal vk,

W ACUNT

Set the callide 30 sprites position and rok:

0; 0;0

False
0; -10000; 0
0;0;0

MONE

|

1

Capy (no conversion)
1

dust

 Falsa.

The robot is controlled by two motors, in turn with binary control by 2
outputs each (one output for each running direction). A contact sensor
detects collisions with objects, a proximity sensor is used to obtain
information on the absence of floor in front of the robot.

List of AUTOMGEN / AUTOSIM variable references

Symbol Variable | Comments

forward motor 1 %q0 Motor 1 forward

backward motor 1 %q1 Motor 1 backward

forward motor 2 %02 Motor 2 forward

backward motor 2 %03 Motor 2 backward

collision %I0 Collision sensor

ir sensor %il No floor in front of robot sensor
Input
Output

Virtual Universe

75

Manipulator with cylindersand suction cup
This project is located in the “samples\cylinders” sub-directory of the
Virtual Universe installation directory. It is accompanied by an .AGN file.

% ¥irtual Universe

Virtual Universe

76

This project illustrates the following functionalities in particular:

- Simulation of the suction cup;

light#1
light#2
.

b camera
-

= WP floor

+| W conveyort

WO support
=| W support

=W cylinder

= P rod
=| WP cyinder
=| WP rod
= WP venturi
[=| W venturi

WAL

sound

LELELE

sound

spring

force

SENS0F Max

SENSOF Mmin

HSHIHIHE

&) B Name

Marne
E Type, ek
Type of the behavior
)
Aktraction
Attraction distance
Apply to siblings

B Rot

B Link
AUTOMGEN or AUTOSIM wariable bype
AUTOMGEN or AUTOSIM variable nurber

Iriitial walue

Current value

Data conversion
Internal current value

Get value From this behavior
External link

More options
B Sound

- Position sensors for the cylinders;

Virtual Universe

Yacuum

Set the 30 sprite attraction Force

: [

Output %0
i

o
a
Copy {no conversion)
1]

True

77

Name

- A=
camera

- Marme SENsOr max

0 floar B Type, etc.

Type of the behavior Test joint position
”- conyeyorl

o ”- suppork
= W support

no; 0

Color
Min position
Maxx position -1,4

B Link
AUTOMGEN or AUTOSIM vatiable bype Inpuk %I
AUTOMGEN or AUTOSIM varisble number 1

are

Iritial value il
“ @ SOUnc Current value i}

Data conversion Copy (no conversion)
. @ SOUNE Inkernal current value]
Marr f other sprite
@ spring Wirite mode Safe
Get value From this behavior
o farce Sl wation ko read Fram the
External link
o More options
Sound
. @ SEMSOF MMin § Sotae
i
{C}} sound
@ sound

Virtual Universe

- Simulation of the cylinder with rod return via spring;

,."'_:-q camera
=] W floor
80P suppart
=| SEP support
= WP cyinder
=] o rod
|=| W cylinder
= WP rod

-=- » wenkur
= 0 wvenkburi -

Virtual Universe

@ WACUL
@ SOUnC
@ SOUnC
@ Pring
@ farce
@ SEMSOF MaX
@ SENsar min
@ sound
@ sound
@ spring
@ farce
e 4 -l

Mame
El Type, etc

Type of the behavior
[Force

Apply to siblings
B Reota

B Link
AUTOMGEM or AUTOSIM variable bype
AUTOMGEN or AUTOSIM variable number

sdvantech chanmel numbe
Initial value

Current value

Data conversion

Internal current value

Get value from this behavior
External link

More options
B Sound

B Script

spring

Apply local Force to the 30 sprite
0; 0; 30

False
o; O;
0;0; 0

MONE

1
1
Copy (no conversion)
1

False

79

=] 8 Mame

Mame farce
Bl Type, et
Type of the behavior Apply local Force to the 30 sprite
[Force 0; 0; -80
Attraction o
Attr stance
Apply ko siblings False
i Paosition L
®
Min position o
Max position 0
B Link

AUTOMSEM or AUTOSIM variable type Output %0
AUTOMGEN or AUTOSIM variable number 1

[}

variable name

iat

MCME
Advark: o
Initial value 0
Current valug o
Diaka conversion Copy {no conversion)
Internal current value o
Marn nthet sprite
ik e Mormal

Get walue From this behaviar

to read Fram the 30 sprite position

True
More aptions
B Sound

Sound opti

Minimal dis

B Script

Force

Virtual Universe

Operation

The arm is composed by two single acting cylinders. A suction cup is
used to grip the bottles. Two conveyors manage the arrival and
departure of the bottles.

List of AUTOMGEN / AUTOSIM variable references

Symbol Variable | Comments
vacuum %q0 Starts the vacuum
go down %q1 Extracts the vertical cylinder
go out %02 Extracts the horizontal cylinder
top %Ii0 Vertical cylinder retracted
bottom %il Vertical cylinder extracted
in %i2 Horizontal cylinder retracted
out %i3 Horizontal cylinder extracted
Input
Output

Virtual Universe

81

